首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lithium‐ion batteries (LIBs) have been widely applied and studied as an effective energy supplement for a variety of electronic devices. Titanium dioxide (TiO2), with a high theoretical capacity (335 mAh g?1) and low volume expansion ratio upon lithiation, has been considered as one of the most promising anode materials for LIBs. However, the application of TiO2 is hindered by its low electrical conductivity and slow ionic diffusion rate. Herein, a 2D ultrathin mesoporous TiO2/reduced graphene (rGO) heterostructure is fabricated via a layer‐by‐layer assembly process. The synergistic effect of ultrathin mesoporous TiO2 and the rGO nanosheets significantly enhances the ionic diffusion and electron conductivity of the composite. The introduced 2D mesoporous heterostructure delivers a significantly improved capacity of 350 mAh g?1 at a current density of 200 mA g?1 and excellent cycling stability, with a capacity of 245 mAh g?1 maintained over 1000 cycles at a high current density of 1 A g?1. The in situ transmission electron microscopy analysis indicates that the volume of the as‐prepared 2D heterostructures changes slightly upon the insertion and extraction of Li+, thus contributing to the enhanced long‐cycle performance.  相似文献   

2.
High energy density is the major demand for next‐generation rechargeable batteries, while the intrinsic low alkali metal adsorption of traditional carbon–based electrode remains the main challenge. Here, the mechanochemical route is proposed to prepare nitrogen doped γ‐graphyne (NGY) and its high capacity is demonstrated in lithium (LIBs)/sodium (SIBs) ion batteries. The sample delivers large reversible Li (1037 mAh g?1) and Na (570.4 mAh g?1) storage capacities at 100 mA g?1 and presents excellent rate capabilities (526 mAh g?1 for LIBs and 180.2 mAh g?1 for SIBs) at 5 A g?1. The superior Li/Na storage mechanisms of NGY are revealed by its 2D morphology evolution, quantitative kinetics, and theoretical calculations. The effects on the diffusion barriers (Eb) and adsorption energies (Ead) of Li/Na atoms in NGY are also studied and imine‐N is demonstrated to be the ideal doping format to enhance the Li/Na storage performance. Besides, the Li/Na adsorption routes in NGY are optimized according to the experimental and the first‐principles calculation results. This work provides a facile way to fabricate high capacity electrodes in LIBs/SIBs, which is also instructive for the design of other heteroatomic doped electrodes.  相似文献   

3.
Mn2O3 is a promising anode material for lithium‐ion batteries (LIBs) because of its high theoretical capacity and low discharge potential. However, low electronic conductivity and capacity fading limits its practical application. In this work, Mn2O3 with 1D nanowire geometry is synthesized in neutral aqueous solutions by a facile and effective hydrothermal strategy for the first time, and then Mn2O3 nanoparticle and nitrogen‐doped reduced graphene oxide (N‐rGO) are composited with Mn2O3 nanowires (Mn2O3‐GNCs) to enhance its volume utilization and conductivity. When used as an anode material for LIBs, the Mn2O3‐GNCs exhibit high reversible capacity (1350 mAh g?1), stable cycling stability, and good rate capability. Surprisingly, the Mn2O3‐GNC electrodes can also show fast charging capability; even after 200 cycles (charge: 10 A g?1; discharge: 0.5 A g?1), its discharge capacity can also keep at ≈500 mAh g?1. In addition, the Mn2O3‐GNCs also have considerable full cell and supercapacitor performance. The excellent electrochemical performances can be ascribed to the N‐rGO network structure and 1D nanowire structure, which can ensure fast ion and electron transportation.  相似文献   

4.
As anodes of Li‐ion batteries, copper oxides (CuO) have a high theoretical specific capacity (674 mA h g?1) but own poor cyclic stability owing to the large volume expansion and low conductivity in charges/discharges. Incorporating reduced graphene oxide (rGO) into CuO anodes with conventional methods fails to build robust interaction between rGO and CuO to efficiently improve the overall anode performance. Here, Cu2O/CuO/reduced graphene oxides (Cu2O/CuO/rGO) with a 3D hierarchical nanostructure are synthesized with a facile, single‐step hydrothermal method. The Cu2O/CuO/rGO anode exhibits remarkable cyclic and high‐rate performances, and particularly the anode with 25 wt% rGO owns the best performance among all samples, delivering a record capacity of 550 mA h g?1 at 0.5 C after 100 cycles. The pronounced performances are attributed to the highly efficient charge transfer in CuO nanosheets encapsulated in rGO network and the mitigated volume expansion of the anode owing to its robust 3D hierarchical nanostructure.  相似文献   

5.
Recently, binary ZnCo2O4 has drawn enormous attention for lithium‐ion batteries (LIBs) as attractive anode owing to its large theoretical capacity and good environmental benignity. However, the modest electrical conductivity and serious volumetric effect/particle agglomeration over cycling hinder its extensive applications. To address the concerns, herein, a rapid laser‐irradiation methodology is firstly devised toward efficient synthesis of oxygen‐vacancy abundant nano‐ZnCo2O4/porous reduced graphene oxide (rGO) hybrids as anodes for LIBs. The synergistic contributions from nano‐dimensional ZnCo2O4 with rich oxygen vacancies and flexible rGO guarantee abundant active sites, fast electron/ion transport, and robust structural stability, and inhibit the agglomeration of nanoscale ZnCo2O4, favoring for superb electrochemical lithium‐storage performance. More encouragingly, the optimal L‐ZCO@rGO‐30 anode exhibits a large reversible capacity of ≈1053 mAh g?1 at 0.05 A g?1, excellent cycling stability (≈746 mAh g?1 at 1.0 A g?1 after 250 cycles), and preeminent rate capability (≈686 mAh g?1 at 3.2 A g?1). Further kinetic analysis corroborates that the capacitive‐controlled process dominates the involved electrochemical reactions of hybrid anodes. More significantly, this rational design holds the promise of being extended for smart fabrication of other oxygen‐vacancy abundant metal oxide/porous rGO hybrids toward advanced LIBs and beyond.  相似文献   

6.
Alloy anodes have shown great potential for next‐generation lithium‐ion batteries (LIBs) and sodium‐ion batteries (SIBs). However, these applications are still limited by inherent huge volume changes and sluggish kinetics. To overcome such limitations, graphene‐protected 3D Sb‐based anodes grown on conductive substrate are designed and fabricated by a facile electrostatic‐assembling and subsequent confinement replacement strategy. As binder‐free anodes for LIBs, the obtained electrode exhibits reversible capacities of 442 mAh g−1 at 100 mA g−1 and 295 mAh g−1 at 1000 mA g−1, and a capacity retention of above 90% (based on the 10th cycle) after 200 cycles at 500 mA g−1. As for sodium storage properties, the reversible capacities of 517 mAh g−1 at 50 mA g−1 and 315 mAh g−1 at 1000 mA g−1, the capacity retention of 305 mAh g−1 after 100 cycles at 300 mA g−1 are obtained, respectively. Furthermore, the 3D architecture retains good structural integrity after cycling, confirming that the introduction of high‐stretchy and robust graphene layers can effectively buffer alloying anodes, and simultaneously provide sustainable contact and protection of the active materials. Such findings show its great potential as superior binder‐free anodes for LIBs and SIBs.  相似文献   

7.
A shuttle effect of polysulfide is one of the crucial barriers for Lithium-sulfur batteries (LSBs). Herein, a flower-like Bi2S3/reduced graphene oxide (rGO) modified separator was fabricated by simple solvothermal and filtration processes. Benefiting from the strong chemical capturing ability of flower-like Bi2S3 and conductive pathway derived from rGO, the modified separator obviously alleviated the polysulfide shuttling. The cell with the flower-like Bi2S3/rGO modified separator exhibits a reversible capacity of 600 mAh g?1 at 0.5C after 300 cycles and a rate capacity of 500 mAh g?1 at 2C.  相似文献   

8.
Potassium‐ion batteries (PIBs) configurated by organic electrodes have been identified as a promising alternative to lithium‐ion batteries. Here, a porous organic Polyimide@Ketjenblack is demonstrated in PIBs as a cathode, which exhibits excellent performance with a large reversible capacity (143 mAh g?1 at 100 mA g?1), high rate capability (125 and 105 mAh g?1 at 1000 and 5000 mA g?1), and long cycling stability (76% capacity retention at 2000 mA g?1 over 1000 cycles). The domination of fast capacitive‐like reaction kinetics is verified, which benefits from the porous structure synthesized using in situ polymerization. Moreover, a renewable and low‐cost full cell is demonstrated with superior rate behavior (106 mAh g?1 at 3200 mA g?1). This work proposes a strategy to design polymer electrodes for high‐performance organic PIBs.  相似文献   

9.
A high capacity cathode is the key to the realization of high‐energy‐density lithium‐ion batteries. The anionic oxygen redox induced by activation of the Li2MnO3 domain has previously afforded an O3‐type layered Li‐rich material used as the cathode for lithium‐ion batteries with a notably high capacity of 250–300 mAh g?1. However, its practical application in lithium‐ion batteries has been limited due to electrodes made from this material suffering severe voltage fading and capacity decay during cycling. Here, it is shown that an O2‐type Li‐rich material with a single‐layer Li2MnO3 superstructure can deliver an extraordinary reversible capacity of 400 mAh g?1 (energy density: ≈1360 Wh kg?1). The activation of a single‐layer Li2MnO3 enables stable anionic oxygen redox reactions and leads to a highly reversible charge–discharge cycle. Understanding the high performance will further the development of high‐capacity cathode materials that utilize anionic oxygen redox processes.  相似文献   

10.
Molybdenum ditelluride nanosheets encapsulated in few‐layer graphene (MoTe2/FLG) are synthesized by a simple heating method using Te and Mo powder and subsequent ball milling with graphite. The as‐prepared MoTe2/FLG nanocomposites as anode materials for lithium‐ion batteries exhibit excellent electrochemical performance with a highly reversible capacity of 596.5 mAh g?1 at 100 mA g?1, a high rate capability (334.5 mAh g?1 at 2 A g?1), and superior cycling stability (capacity retention of 99.5% over 400 cycles at 0.5 A g?1). Ex situ X‐ray diffraction and transmission electron microscopy are used to explore the lithium storage mechanism of MoTe2. Moreover, the electrochemical performance of a MoTe2/FLG//0.35Li2MnO3·0.65LiMn0.5Ni0.5O2 full cell is investigated, which displays a reversible capacity of 499 mAh g?1 (based on the MoTe2/FLG mass) at 100 mA g?1 and a capacity retention of 78% over 50 cycles, suggesting the promising application of MoTe2/FLG for lithium‐ion storage. First‐principles calculations exhibit that the lowest diffusion barrier (0.18 eV) for lithium ions along pathway III in the MoTe2 layered structure is beneficial for improving the Li intercalation/deintercalation property.  相似文献   

11.
In this work, hydroxyl‐functionalized Mo2C‐based MXene nanosheets are synthesized by facilely removing the Sn layer of Mo2SnC. The hydroxyl‐functionalized surface of Mo2C suppresses the shuttle effect of lithium polysulfides (LiPSs) through strong interaction between Mo atoms on the MXenes surface and LiPSs. Carbon nanotubes (CNTs) are further introduced into Mo2C phase to enlarge the specific surface area of the composite, improve its electronic conductivity, and alleviate the volume change during discharging/charging. The strong surface‐bound sulfur in the hierarchical Mo2C‐CNTs host can lead to a superior electrochemical performance in lithium–sulfur batteries. A large reversible capacity of ≈925 mAh g ? 1 is observed after 250 cycles at a current density of 0.1 C (1 C = 1675 mAh g?1) with good rate capability. Notably, the electrodes with high loading amounts of sulfur can also deliver good electrochemical performances, i.e., initial reversible capacities of ≈1314 mAh g?1 (2.4 mAh cm?2), ≈1068 mAh g?1 (3.7 mAh cm?2), and ≈959 mAh g?1 (5.3 mAh cm?2) at various areal loading amounts of sulfur (1.8, 3.5, and 5.6 mg cm?2) are also observed, respectively.  相似文献   

12.
Three‐dimensional porous Sb/Sb2O3 anode materials are successfully fabricated using a simple electrodeposition method with a polypyrrole nanowire network. The Sb/Sb2O3–PPy electrode exhibits excellent cycle performance and outstanding rate capabilities; the charge capacity is sustained at 512.01 mAh g?1 over 100 cycles, and 56.7% of the charge capacity at a current density of 66 mA g?1 is retained at 3300 mA g?1. The improved electrochemical performance of the Sb/Sb2O3–PPy electrode is attributed not only to the use of a highly porous polypyrrole nanowire network as a substrate but also to the buffer effects of the Sb2O3 matrix on the volume expansion of Sb. Ex situ scanning electron microscopy observation confirms that the Sb/Sb2O3–PPy electrode sustains a strong bond between the nanodeposits and polypyrrole nanowires even after 100 cycles, which maintains good electrical contact of Sb/Sb2O3 with the current collector without loss of the active materials.  相似文献   

13.
The large‐scale application of sodium/potassium‐ion batteries is severely limited by the low and slow charge storage dynamics of electrode materials. The crystalline carbons exhibit poor insertion capability of large Na+/K+ ions, which limits the storage capability of Na/K batteries. Herein, porous S and N co‐doped thin carbon (S/N@C) with shell‐like (shell size ≈20–30 nm, shell wall ≈8–10 nm) morphology for enhanced Na+/K+ storage is presented. Thanks to the hollow structure and thin shell‐wall, S/N@C exhibits an excellent Na+/K+ storage capability with fast mass transport at higher current densities, leading to limited compromise over charge storage at high charge/discharge rates. The S/N@C delivers a high reversible capacity of 448 mAh g‐1 for Na battery, at the current density of 100 mA g‐1 and maintains a discharge capacity up to 337 mAh g‐1 at 1000 mA g‐1. Owing to shortened diffusion pathways, S/N@C delivers an unprecedented discharge capacity of 204 and 169 mAh g‐1 at extremely high current densities of 16 000 and 32 000 mA g‐1, respectively, with excellent reversible capacity for 4500 cycles. Moreover, S/N@C exhibits high K+ storage capability (320 mAh g‐1 at current density of 50 mA g‐1) and excellent cyclic life.  相似文献   

14.
Transition metal chalcogenide with tailored nanosheet architectures with reduced graphene oxide (rGO) for high performance electrochemical sodium ion batteries (SIBs) are presented. Via one‐step oriented attachment growth, a facile synthesis of Co9Se8 nanosheets anchored on rGO matrix nanocomposites is demonstrated. As effective anode materials of SIBs, Co9Se8/rGO nanocomposites can deliver a highly reversible capacity of 406 mA h g?1 at a current density of 50 mA g?1 with long cycle stability. It can also deliver a high specific capacity of 295 mA h g?1 at a high current density of 5 A g?1 indicating its high rate capability. Furthermore, ex situ transmission electron microscopy observations provide insight into the reaction path of nontopotactic conversion in the hybrid anode, revealing the highly reversible conversion directly between the hybrid Co9Se8/rGO and Co nanoparticles/Na2Se matrix during the sodiation/desodiation process. In addition, it is experimentally demonstrated that rGO plays significant roles in both controllable growth and electrochemical conversion processes, which can not only modulate the morphology of the product but also tune the sodium storage performance. The investigation on hybrid Co9Se8/rGO nanosheets as SIBs anode may shed light on designing new metal chalcogenide materials for high energy storage system.  相似文献   

15.
Potassium‐ion batteries (KIBs) are receiving increasing interest in grid‐scale energy storage owing to the earth abundant and low cost of potassium resources. However, their development still stays at the infancy stage due to the lack of suitable electrode materials with reversible depotassiation/potassiation behavior, resulting in poor rate performance, low capacity, and cycling stability. Herein, the first example of synthesizing single‐crystalline metallic graphene‐like VSe2 nanosheets for greatly boosting the performance of KIBs in term of capacity, rate capability, and cycling stability is reported. Benefiting from the unique 2D nanostructure, high electron/K+‐ion conductivity, and outstanding pseudocapacitance effects, ultrathin VSe2 nanosheets show a very high reversible capacity of 366 mAh g?1 at 100 mA g?1, a high rate capability of 169 mAh g?1 at 2000 mA g?1, and a very low decay of 0.025% per cycle over 500 cycles, which are the best in all the reported anode materials in KIBs. The first‐principles calculations reveal that VSe2 nanosheets have large adsorption energy and low diffusion barriers for the intercalation of K+‐ion. Ex situ X‐ray diffraction analysis indicates that VSe2 nanosheets undertake a reversible phase evolution by initially proceeding with the K+‐ion insertion within VSe2 layers, followed by the conversion reaction mechanism.  相似文献   

16.
High and balanced electronic and ionic transportation networks with nanoscale distribution in solid‐state cathodes are crucial to realize high‐performance all‐solid‐state lithium batteries. Using Cu2SnS3 as a model active material, such a kind of solid‐state Cu2SnS3@graphene‐Li7P3S11 nanocomposite cathodes are synthesized, where 5–10 nm Cu2SnS3 nanoparticles homogenously anchor on the graphene nanosheets, while the Li7P3S11 electrolytes uniformly coat on the surface of Cu2SnS3@graphene composite forming nanoscaled electron/ion transportation networks. The large amount of nanoscaled triple‐phase boundary in cathode ensures high power density due to high ionic/electronic conductions and long cycle life due to uniform and reduced volume change of nano‐Cu2SnS3. The Cu2SnS3@graphene‐Li7P3S11 cathode layer with 2.0 mg cm?2 loading in all‐solid‐state lithium batteries demonstrates a high reversible discharge specific capacity of 813.2 mAh g?1 at 100 mA g?1 and retains 732.0 mAh g?1 after 60 cycles, corresponding to a high energy density of 410.4 Wh kg?1 based on the total mass of Cu2SnS3@graphene‐Li7P3S11 composite based cathode. Moreover, it exhibits excellent rate capability and high‐rate cycling stability, showing reversible capacity of 363.5 mAh g?1 at 500 mA g?1 after 200 cycles. The study provides a new insight into constructing both electronic and ionic conduction networks for all‐solid‐state lithium batteries.  相似文献   

17.
A solid‐state lithium‐ion battery, in which all components (current collector, anode and cathode, electrolyte, and packaging) are stretchable, is introduced, giving rise to a battery design with mechanical properties that are compliant with flexible electronic devices and elastic wearable systems. By depositing Ag microflakes as a conductive layer on a stretchable carbon–polymer composite, a current collector with a low sheet resistance of ≈2.7 Ω □?1 at 100% strain is obtained. Stretchable electrodes are fabricated by integrating active materials with the elastic current collector. A polyacrylamide–“water‐in‐salt” electrolyte is developed, offering high ionic conductivity of 10?3 to 10?2 S cm?1 at room temperature and outstanding stretchability up to ≈300% of its original length. Finally, all these components are assembled into a solid‐state lithium‐ion full cell in thin‐film configuration. Thanks to the deformable individual components, the full cell functions when stretched, bent, or even twisted. For example, after stretching the battery to 50%, a reversible capacity of 28 mAh g?1 and an average energy density of 20 Wh kg?1 can still be obtained after 50 cycles at 120 mA g?1, confirming the functionality of the battery under extreme mechanical stress.  相似文献   

18.
This paper demonstrates the ability of a CuCo2S4–reduced graphene oxide (rGO) composite to perform robust electrochemical performances applying to supercapacitors (SCs) and lithium ion batteries (LIBs). The first‐principle calculation based on density functional theory is conducted to study the electronic property of CuCo2O4 and CuCo2S4 and provide a theoretical basis for this work. Then, the 3D spinel‐structured CuCo2O4 and CuCo2S4 microflowers are synthesized and compared as electrodes for both SCs and LIBs. The CuCo2S4 microflowers can provide a larger specific surface area, which enlarges the contact area between the electrode material and the electrolyte and contributes to high‐efficiency electrochemical reactions. The reduced graphene oxides are coated on the CuCo2S4 microflowers, therefore effectively increasing the conductivity, and further absorbing the stress produced in the reaction process. As an electrode of a symmetric supercapacitor, the optimized CuCo2S4–rGO composite exhibits an energy density of 16.07 Wh kg?1 and a maximum power density of 3600 W kg?1. Moreover, the CuCo2S4–rGO composite can also be used as an anode for lithium ion batteries, exhibiting a reversible capacity of 1050 mAh g?1 after 140 cycles at the current density of 200 mA g?1. The galvanostatic intermittence titration techniques also reveal superior Li‐ion diffusion behavior of the CuCo2S4–rGO composite during redox reactions.  相似文献   

19.
Potassium‐ion batteries (KIBs) are promising alternatives to lithium‐ion batteries because of the abundance and low cost of K. However, an important challenge faced by KIBs is the search for high‐capacity materials that can hold large‐diameter K ions. Herein, copper oxide (CuO) nanoplates are synthesized as high‐performance anode materials for KIBs. CuO nanoplates with a thickness of ≈20 nm afford a large electrode–electrolyte contact interface and short K+ ion diffusion distance. As a consequence, a reversible capacity of 342.5 mAh g?1 is delivered by the as‐prepared CuO nanoplate electrode at 0.2 A g?1. Even after 100 cycles at a high current density of 1.0 A g?1, the capacity of the electrode remains over 206 mAh g?1, which is among the best values for KIB anodes reported in the literature. Moreover, a conversion reaction occurs at the CuO anode. Cu nanoparticles form during the first potassiation process and reoxidize to Cu2O during the depotassiation process. Thereafter, the conversion reaction proceeds between the as‐formed Cu2O and Cu, yielding a reversible theoretical capacity of 374 mAh g?1. Considering their low cost, easy preparation, and environmental benignity, CuO nanoplates are promising KIB anode materials.  相似文献   

20.
Fe2O3 is regarded as a promising anode material for lithium‐ion batteries (LIBs) and sodium‐ion batteries (SIBs) due to its high specific capacity. The large volume change during discharge and charge processes, however, induces significant cracking of the Fe2O3 anodes, leading to rapid fading of the capacity. Herein, a novel peapod‐like nanostructured material, consisting of Fe2O3 nanoparticles homogeneously encapsulated in the hollow interior of N‐doped porous carbon nanofibers, as a high‐performance anode material is reported. The distinctive structure not only provides enough voids to accommodate the volume expansion of the pea‐like Fe2O3 nanoparticles but also offers a continuous conducting framework for electron transport and accessible nanoporous channels for fast diffusion and transport of Li/Na‐ions. As a consequence, this peapod‐like structure exhibits a stable discharge capacity of 1434 mAh g?1 (at 100 mA g?1) and 806 mAh g?1 (at 200 mA g?1) over 100 cycles as anode materials for LIBs and SIBs, respectively. More importantly, a stable capacity of 958 mAh g?1 after 1000 cycles and 396 mAh g?1 after 1500 cycles can be achieved for LIBs and SIBs, respectively, at a large current density of 2000 mA g?1. This study provides a promising strategy for developing long‐cycle‐life LIBs and SIBs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号