首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Large‐scale and high‐quality 2D materials have been an emerging and promising choice for use in modern chemistry and physics owing to their fascinating property profile. The past few years have witnessed inspiringly progressing development in controlled fabrication of large‐sized and single‐crystal 2D materials. Among those production methods, chemical vapor deposition (CVD) has drawn the most attention because of its fine control over size and quality of 2D materials by modulating the growth conditions. Meanwhile, Cu has been widely accepted as the most popular catalyst due to its significant merit in growing monolayer 2D materials in the CVD process. Herein, very recent advances in preparing large‐sized 2D single crystals on Cu substrates by CVD are presented. First, the unique features of Cu will be given in terms of ultralow precursor solubility and feasible surface engineering. Then, scaled growth of graphene and hexagonal boron nitride (h‐BN) crystals on Cu substrates is demonstrated, wherein different kinds of Cu surfaces have been employed. Furthermore, the growth mechanism for the growth of 2D single crystals is exhibited, offering a guideline to elucidate the in‐depth growth dynamics and kinetics. Finally, relevant issues for industrial‐scale mass production of 2D single crystals are discussed and a promising future is expected.  相似文献   

4.
Two‐dimensional, solution‐processable semiconductor materials are anticipated to be used in low‐cost electronic applications, such as transistors and solar cells. Here, lead sulfide nanosheets with a lateral size of several micrometers are synthesized and it is shown how their height can be tuned by the variation of the ligand concentrations. As a consequence of the adjustability of the nanosheets' height between 4 to more than 20 nm charge carriers are in confinement, which has a decisive impact on their electronic properties. This is demonstrated by their use as conduction channel in a field‐effect transistor. The experiments show that the performance in terms of current, On/Off ratio, and sub‐threshold swing is tunable over a large range.  相似文献   

5.
6.
7.
Tremendous efforts have been devoted to the synthesis and application of two‐dimensional (2D) nanomaterials due to their extraordinary and unique properties in electronics, photonics, catalysis, etc., upon exfoliation from their bulk counterparts. One of the greatest challenges that scientists are confronted with is how to produce large quantities of 2D nanomaterials of high quality in a commercially viable way. This review summarizes the state‐of‐the‐art of the production of 2D nanomaterials using liquid‐based direct exfoliation (LBE), a very promising and highly scalable wet approach for synthesizing high quality 2D nanomaterials in mild conditions. LBE is a collection of methods that directly exfoliates bulk layered materials into thin flakes of 2D nanomaterials in liquid media without any, or with a minimum degree of, chemical reactions, so as to maintain the high crystallinity of 2D nanomaterials. Different synthetic methods are categorized in the following, in which material characteristics including dispersion concentration, flake thickness, flake size and some applications are discussed in detail. At the end, we provide an overview of the advantages and disadvantages of such synthetic methods of LBE and propose future perspectives.  相似文献   

8.
State‐of‐the‐art energy storage devices are capable of delivering reasonably high energy density (lithium ion batteries) or high power density (supercapacitors). There is an increasing need for these power sources with not only superior electrochemical performance, but also exceptional flexibility. Graphene has come on to the scene and advancements are being made in integration of various electrochemically active compounds onto graphene or its derivatives so as to utilize their flexibility. Many innovative synthesis techniques have led to novel graphene‐based hybrid two‐dimensional nanostructures. Here, the chemically integrated inorganic‐graphene hybrid two‐dimensional materials and their applications for energy storage devices are examined. First, the synthesis and characterization of different kinds of inorganic‐graphene hybrid nanostructures are summarized, and then the most relevant applications of inorganic‐graphene hybrid materials in flexible energy storage devices are reviewed. The general design rules of using graphene‐based hybrid 2D materials for energy storage devices and their current limitations and future potential to advance energy storage technologies are also discussed.  相似文献   

9.
Ultrathin bismuth exhibits promising performance for topological insulators due to its narrow band gap and intrinsic strong spin–orbit coupling, as well as for energy‐related applications because of its electronic and mechanical properties. However, large‐scale production of 2D sheets via liquid‐phase exfoliation as an established large‐scale method is restricted by the strong interaction between bismuth layers. Here, a sonication method is utilized to produce ultrahigh‐aspect‐ratio bismuthene microsheets. The studies on the mechanism excludes the exfoliation of the layered bulk bismuth and formation of the microsheets is attributed to the melting of spherical particles (r = 1.5 µm) at a high temperature—generated under the ultrasonic tip—followed by a recrystallization step producing uniformly‐shaped ultrathin microsheets (A = 0.5–2 µm2, t: ≈2 nm). Notably, although the preparation is performed in oxygenated aqueous solution, the sheets are not oxidized, and they are stable under ambient conditions for at least 1 month. The microsheets are used to construct a vapor sensor using electrochemical impedance spectroscopy as detection technique. The device is highly selective, and it shows long‐term stability. Overall, this project exhibits a reproducible method for large‐scale preparation of ultrathin bismuthene microsheets in a benign environment, demonstrating opportunities to realize devices based on bismuthene.  相似文献   

10.
A nanostructured carbon with high specific surface area (SSA), tunable pore structure, superior electrical conductivity, mechanically robust framework, and high chemical stability is an important requirement for electrochemical energy storage. Porous graphene fabricated by chemical activation and liquid etching has a high surface area but very limited volume of electrochemically accessible mesopores. Herein, an effective strategy of in situ formation of hierarchically mesoporous oxide templates with small pores induced by Kirkendall diffusion and large pores attributed to evaporation of deliberately introduced volatile metal is proposed for chemical vapor deposition assembly of porous graphene frameworks (PGFs). The PGFs inherit the hierarchical mesoporous structure of the templates. A high SSA of 1448 m2 g−1, 91.6% of which is contributed by mesopores, and a mesopore volume of 2.40 cm3 g−1 are attained for PGFs serving as reservoirs of ions or active materials in electrochemical energy storage applications. When the PGFs are applied in lithium‐sulfur batteries, a very high sulfur utilization of 71% and a very low fading rate of ≈0.04% per cycle after the second cycle are achieved at a current rate of 1.0 C. This work provides a general strategy for the rational construction of mesoporous structures induced by a volatile metal, with a view toward the design of hierarchical nanomaterials for advanced energy storage.  相似文献   

11.
12.
13.
14.
Lithium‐ion batteries have proven to be extremely attractive candidates for applications in portable electronics, electric vehicles, and smart grid in terms of energy density, power density, and service life. Further performance optimization to satisfy ever‐increasing demands on energy storage of such applications is highly desired. In most of cases, the kinetics and stability of electrode materials are strongly correlated to the transport and storage behaviors of lithium ions in the lattice of the host. Therefore, information about structural evolution of electrode materials at an atomic scale is always helpful to explain the electrochemical performances of batteries at a macroscale. The annular‐bright‐field (ABF) imaging in aberration‐corrected scanning transmission electron microscopy (STEM) allows simultaneous imaging of light and heavy elements, providing an unprecedented opportunity to probe the nearly equilibrated local structure of electrode materials after electrochemical cycling at atomic resolution. Recent progress toward unraveling the atomic‐scale structure of selected electrode materials with different charge and/or discharge state to extend the current understanding of electrochemical reaction mechanism with the ABF and high angle annular dark field STEM imaging is presented here. Future research on the relationship between atomic‐level structure evolution and microscopic reaction mechanisms of electrode materials for rechargeable batteries is envisaged.  相似文献   

15.
Germanium phosphide (GeP), a new member of the Group IV–Group V compounds, is introduced into the fast growing 2D family with experimental and theoretical demonstration of strong anisotropic physical properties. The indirect band gap of GeP can be drastically tuned from 1.68 eV for monolayer to 0.51 eV for bulk, with highly anisotropic dispersions of band structures. Thin GeP shows strong anisotropy of phonon vibrations. Moreover, photodetectors based on GeP flakes show highly anisotropic behavior with anisotropic factors of 1.52 and 1.83 for conductance and photoresponsivity, respectively. This work lays the foundation and ignites future research interests in Group IV–Group V compound 2D materials.  相似文献   

16.
Zinc‐ion batteries are under current research focus because of their uniqueness in low cost and high safety. However, it is still desirable to improve the rate performance by improving the Zn2+ (de)intercalation kinetics and long‐cycle stability by eliminating the dendrite formation problem. Herein, the first paradigm of a high‐rate and ultrastable flexible quasi‐solid‐state zinc‐ion battery is constructed from a novel 2D ultrathin layered zinc orthovanadate array cathode, a Zn array anode supported by a conductive porous graphene foam, and a gel electrolyte. The nanoarray structure for both electrodes assures the high rate capability and alleviates the dendrite growth. The flexible Zn‐ion battery has a depth of discharge of ≈100% for the cathode and 66% for the anode, and delivers an impressive high‐rate of 50 C (discharge in 60 s), long‐term durability of 2000 cycles at 20 C, and unprecedented energy density ≈115 Wh kg?1, together with a peak power density ≈5.1 kW kg?1 (calculation includes masses of cathode, anode, and current collectors). First principles calculations and quantitative kinetics analysis show that the high‐rate and stable properties are correlated with the 2D fast ion‐migration pathways and the introduced intercalation pseudocapacitance.  相似文献   

17.
18.
During the last 10 years, remarkable achievements on the chemical vapor deposition (CVD) growth of 2D materials have been made, but the understanding of the underlying mechanisms is still relatively limited. Here, the current progress on the understanding of the growth kinetics of 2D materials, especially for their CVD synthesis, is reviewed. In order to present a complete picture of 2D materials' growth kinetics, the following factors are discussed: i) two types of growth modes, namely attachment‐limited growth and diffusion‐limited growth; ii) the etching of 2D materials, which offers an additional degree of freedom for growth control; iii) a number of experimental factors in graphene CVD synthesis, such as structure of the substrate, pressure of hydrogen or oxygen, temperature, etc., which are found to have profound effects on the growth kinetics; iv) double‐layer and few‐layer 2D materials' growth, which has distinct features different from the growth of single‐layer 2D materials; and v) the growth of polycrystalline 2D materials by the coalescence of a few single crystalline domains. Finally, the current challenges and opportunities in future 2D materials' synthesis are summarized.  相似文献   

19.
The formation of ordered arrays of molecules via self‐assembly is a rapid, scalable route towards the realization of nanoscale architectures with tailored properties. In recent years, graphene has emerged as an appealing substrate for molecular self‐assembly in two dimensions. Here, the first five years of progress in supramolecular organization on graphene are reviewed. The self‐assembly process can vary depending on the type of graphene employed: epitaxial graphene, grown in situ on a metal surface, and non‐epitaxial graphene, transferred onto an arbitrary substrate, can have different effects on the final structure. On epitaxial graphene, the process is sensitive to the interaction between the graphene and the substrate on which it is grown. In the case of graphene that strongly interacts with its substrate, such as graphene/Ru(0001), the inhomogeneous adsorption landscape of the graphene moiré superlattice provides a unique opportunity for guiding molecular organization, since molecules experience spatially constrained diffusion and adsorption. On weaker‐interacting epitaxial graphene films, and on non‐epitaxial graphene transferred onto a host substrate, self‐assembly leads to films similar to those obtained on graphite surfaces. The efficacy of a graphene layer for facilitating planar adsorption of aromatic molecules has been repeatedly demonstrated, indicating that it can be used to direct molecular adsorption, and therefore carrier transport, in a certain orientation, and suggesting that the use of transferred graphene may allow for predictible molecular self‐assembly on a wide range of surfaces.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号