首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
赵书平  王婵  杨正龙  姜玮 《材料导报》2016,30(1):136-142
作为一种新型锂离子电池负极材料,二氧化锡由于具有高比容量、低嵌锂电势等优点而受到了广泛关注。但是二氧化锡在充放电循环中体积变化过大,导致其不可逆容量损失大、循环性能较差。纳米化和合金化是解决这一问题的有效途径。综述了纳米结构二氧化锡及其复合材料,特别是二氧化锡纳米线、纳米棒、纳米管、纳米片等与无定形碳、碳纳米管、石墨烯的复合材料在锂离子电池负极材料中的研究进展,并展望了其应用前景。  相似文献   

2.
Rechargeable lithium ion batteries are integral to today's information‐rich, mobile society. Currently they are one of the most popular types of battery used in portable electronics because of their high energy density and flexible design. Despite their increasing use at the present time, there is great continued commercial interest in developing new and improved electrode materials for lithium ion batteries that would lead to dramatically higher energy capacity and longer cycle life. Silicon is one of the most promising anode materials because it has the highest known theoretical charge capacity and is the second most abundant element on earth. However, silicon anodes have limited applications because of the huge volume change associated with the insertion and extraction of lithium. This causes cracking and pulverization of the anode, which leads to a loss of electrical contact and eventual fading of capacity. Nanostructured silicon anodes, as compared to the previously tested silicon film anodes, can help overcome the above issues. As arrays of silicon nanowires or nanorods, which help accommodate the volume changes, or as nanoscale compliant layers, which increase the stress resilience of silicon films, nanoengineered silicon anodes show potential to enable a new generation of lithium ion batteries with significantly higher reversible charge capacity and longer cycle life.  相似文献   

3.
4.
In recent years, with the growing demand for higher capacity, longer cycling life, and higher power and energy density of lithium ion batteries (LIBs), the traditional insertion‐based anodes are increasingly considered out of their depth. Herein, attention is paid to the structural reorganization electrode, which is the general term for conversion‐based and alloying‐based materials according to their common characteristics during the lithiation/delithiation process. This Review summarizes the recent achievements in improving and understanding the lithium storage performance of conversion‐based anodes (especially the most widely studied transition metal oxides like Mn‐, Fe‐, Co‐, Ni‐, and Cu‐based oxides) and alloying‐based anodes (mainly including Si‐, Sn‐, Ge‐, and Sb‐based materials). The synthesis schemes, morphological control and reaction mechanism of these materials are also included. Finally, viewpoints about the challenges and feasible improvement measures for future development in this direction are given. The aim of this Review is to shed some light on future electrode design trends of structural reorganization anode materials for LIBs.  相似文献   

5.
采用氢氧化物共沉淀法制备出Ni0.43Mn0.57(OH)2前驱体,与Li2CO3混合制备了锂离子电池正极材料Li1.07Ni0.4Mn0.53O2,利用SEM、XRD对所得试样的形貌和晶体结构进行了表征,并研究了材料的电化学性能。结果表明:950℃下保温16h所得Li1.07Ni0.4Mn0.53O2具有良好的倍率性能和循环稳定性,2.75~4.2V、90mA/g(0.5C)下Li1.07Ni0.4Mn0.53O2的首次放电比容量达到127.11mAh/g,100次循环后容量保持率为98.99%。  相似文献   

6.
7.
Silicon doped tin oxide embedded porous carbon microspheres (Siy Sn1–y Ox @C) are synthesized. It is found that the doped Si not only improves the reversibility of lithiation/delithiation reactions, but also prevents Sn from aggregation. In addition, the doped Si introduces extra defects into the carbon matrix and produces Li+ conductive Li4SiO4, which accelerates Li+ diffusion. Together with the conductive, porous carbon matrix that provides void space to accommodate the volume change of Sn during charge/discharge cycling, the novel Siy Sn1–y Ox @C exhibits excellent electrochemical performance. It shows a high initial columbic efficiency of 75.9%. A charge (delithiation) capacity of 880.32 mA h g−1 is retained after 150 cycles, i.e., 91% of the initial capacity. These results indicate that the as‐synthesized Siy Sn1–y Ox @C is a promising anode material for lithium ion batteries.  相似文献   

8.
Titanium‐based oxides including TiO2 and M‐Ti‐O compounds (M = Li, Nb, Na, etc.) family, exhibit advantageous structural dynamics (2D ion diffusion path, open and stable structure for ion accommodations) for practical applications in energy storage systems, such as lithium‐ion batteries, sodium‐ion batteries, and hybrid pseudocapacitors. Further, Ti‐based oxides show high operating voltage relative to the deposition of alkali metal, ensuring full safety by avoiding the formation of lithium and sodium dendrites. On the other hand, high working potential prevents the decomposition of electrolyte, delivering excellent rate capability through the unique pseudocapacitive kinetics. Nevertheless, the intrinsic poor electrical conductivity and reaction dynamics limit further applications in energy storage devices. Recently, various work and in‐depth understanding on the morphologies control, surface engineering, bulk‐phase doping of Ti‐based oxides, have been promoted to overcome these issues. Inspired by that, in this review, the authors summarize the fundamental issues, challenges and advances of Ti‐based oxides in the applications of advanced electrochemical energy storage. Particularly, the authors focus on the progresses on the working mechanism and device applications from lithium‐ion batteries to sodium‐ion batteries, and then the hybrid pseudocapacitors. In addition, future perspectives for fundamental research and practical applications are discussed.  相似文献   

9.
10.
二氧化锡纳米材料具有毒性小、成本低、可逆容量高等优点,是当前研究最为广泛的锂离子动力电池负极材料之一。构建与碳复合的二氧化锡基纳米结构是缓解二氧化锡在长时间的嵌/脱锂循环过程中体积膨胀、控制纳米颗粒团聚问题以及增加材料导电性的有效方法。用高效、可控的静电纺丝技术,结合高温煅烧、水热合成、化学沉积等方法,可制备出结构型二氧化锡/碳复合纳米纤维。本文讨论了具有不同碳层分布的均匀型、核壳型及三明治型结构的二氧化锡/碳复合纳米纤维的制备方法,以及不同碳层分布对其锂电性能的改善状况及机理分析。  相似文献   

11.
12.
13.
14.
锂离子电池多孔硅/碳复合负极材料的研究   总被引:1,自引:0,他引:1  
以商业化多晶硅粉为原料, 采用金属银催化剂诱导化学腐蚀的方法制得三维多孔硅材料。通过优化腐蚀条件, 得到孔径约为130 nm, 比表面为4.85 m2/g的多孔硅材料。将多孔硅和PAN溶液混合球磨并经高温烧结后在多孔硅表面包覆上一层致密的无定形碳膜, 从而制得多孔硅/碳复合材料作为锂离子电池的负极材料。3D多孔硅结构可以缓解电化学嵌/脱锂过程中材料的体积效应, 无定形碳膜层可有效改善复合材料的导电性能。电化学性能测试表明, 该多孔硅/碳复合负极材料电池在0.4 A/g的恒电流下, 首次放电容量3345 mAh/g, 首次循环库伦效率85.8%, 循环55次后容量仍保持有1645 mAh/g。并且在4 A/g的倍率下, 容量仍维持有1174 mAh/g。该方法原料成本低廉, 可规模化生产。  相似文献   

15.
16.
17.
Silicon has been intensively studied as an anode material for lithium‐ion batteries (LIB) because of its exceptionally high specific capacity. However, silicon‐based anode materials usually suffer from large volume change during the charge and discharge process, leading to subsequent pulverization of silicon, loss of electric contact, and continuous side reactions. These transformations cause poor cycle life and hinder the wide commercialization of silicon for LIBs. The lithiation and delithiation behaviors, and the interphase reaction mechanisms, are progressively studied and understood. Various nanostructured silicon anodes are reported to exhibit both superior specific capacity and cycle life compared to commercial carbon‐based anodes. However, some practical issues with nanostructured silicon cannot be ignored, and must be addressed if it is to be widely used in commercial LIBs. This Review outlines major impactful work on silicon‐based anodes, and the most recent research directions in this field, specifically, the engineering of silicon architectures, the construction of silicon‐based composites, and other performance‐enhancement studies including electrolytes and binders. The burgeoning research efforts in the development of practical silicon electrodes, and full‐cell silicon‐based LIBs are specially stressed, which are key to the successful commercialization of silicon anodes, and large‐scale deployment of next‐generation high energy density LIBs.  相似文献   

18.
19.
20.
The CuS(x wt%)@Cu‐BTC (BTC = 1,3,5‐benzenetricarboxylate; x = 3, 10, 33, 58, 70, 99.9) materials are synthesized by a facile sulfidation reaction. The composites are composed of octahedral Cu3(BTC)2·(H2O)3 (Cu‐BTC) with a large specific surface area and CuS with a high conductivity. The as‐prepared CuS@Cu‐BTC products are first applied as the anodes of lithium‐ion batteries (LIBs). The synergistic effect between Cu‐BTC and CuS components can not only accommodate the volume change and stress relaxation of electrodes but also facilitate the fast transport of Li ions. Thus, it can greatly suppress the transformation process from Li2S to polysulfides by improving the reversibility of the conversion reaction. Benefiting from the unique structural features, the optimal CuS(70 wt%)@Cu‐BTC sample exhibits a remarkably improved electrochemical performance, showing an over‐theoretical capacity up to 1609 mAh g?1 after 200 cycles (100 mA g?1) with an excellent rate‐capability of ≈490 mAh g?1 at 1000 mA g?1. The outstanding LIB properties indicate that the CuS(70 wt%)@Cu‐BTC sample is a highly desirable electrode material candidate for high‐performance LIBs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号