首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Motile metal?organic frameworks (MOFs) are potential candidates to serve as small‐scale robotic platforms for applications in environmental remediation, targeted drug delivery, or nanosurgery. Here, magnetic helical microstructures coated with a kind of zinc‐based MOF, zeolitic imidazole framework‐8 (ZIF‐8), with biocompatibility characteristics and pH‐responsive features, are successfully fabricated. Moreover, it is shown that this highly integrated multifunctional device can swim along predesigned tracks under the control of weak rotational magnetic fields. The proposed systems can achieve single‐cell targeting in a cell culture media and a controlled delivery of cargo payloads inside a complex microfluidic channel network. This new approach toward the fabrication of integrated multifunctional systems will open new avenues in soft microrobotics beyond current applications.  相似文献   

2.
Carbon materials derived from metal–organic frameworks (MOFs) have attracted much attention in the field of scientific research in recent years because of their advantages of excellent electron conductivity, high porosity, and diverse applications. Tremendous efforts are devoted to improving their chemical and physical properties, including optimizing the morphology and structure of the carbon materials, compositing them with other materials, and so on. Here, many kinds of carbon materials derived from metal–organic frameworks are introduced with a particular focus on their promising applications in batteries (lithium‐ion batteries, lithium–sulfur batteries, and sodium‐ion batteries), supercapacitors (metal oxide/carbon and metal sulfide/carbon), electrocatalytic reactions (oxygen reduction reaction, oxygen evolution reaction, and hydrogen evolution reaction), water treatment (MOF‐derived carbon and other techniques), and other possible fields. To close, some existing problem and corresponding possible solutions are proposed based on academic knowledge from the reported literature, along with a great deal of experimental experience.  相似文献   

3.
A general one‐step in situ pyrolysis route for the construction of metal–organic frameworks encapsulating superparamagnetic γ‐Fe2O3 NPs dispersed in the confined cavities of MOFs homogeneously is described. The integration of γ‐Fe2O3 NPs or clusters into MOFs can endow these porous materials with superparamagnetic element. By the combination of the thermal stability of MOFs and pyrolysis of metal triacetylacetonate complex at matched conditions, the porous structure of MOFs are well maintained while the size‐induced superparamagnetic property of nano γ‐Fe2O3 is obtained. As a proof of concept, both the γ‐ Fe2O3@ZIF‐8 and γ‐Fe2O3@MIL‐53(Al) were successfully prepared, and the latter was chosen to demonstrate its potential drug delivery as a magnetic MOF.  相似文献   

4.
Photoreduction of CO2 into reusable carbon forms is considered as a promising approach to address the crisis of energy from fossil fuels and reduce excessive CO2 emission. Recently, metal–organic frameworks (MOFs) have attracted much attention as CO2 photoreduction‐related catalysts, owing to their unique electronic band structures, excellent CO2 adsorption capacities, and tailorable light‐absorption abilities. Recent advances on the design, synthesis, and CO2 reduction applications of MOF‐based photocatalysts are discussed here, beginning with the introduction of the characteristics of high‐efficiency photocatalysts and structural advantages of MOFs. The roles of MOFs in CO2 photoreduction systems as photocatalysts, photocatalytic hosts, and cocatalysts are analyzed. Detailed discussions focus on two constituents of pure MOFs (metal clusters such as Ti–O, Zr–O, and Fe–O clusters and functional organic linkers such as amino‐modified, photosensitizer‐functionalized, and electron‐rich conjugated linkers) and three types of MOF‐based composites (metal–MOF, semiconductor–MOF, and photosensitizer–MOF composites). The constituents, CO2 adsorption capacities, absorption edges, and photocatalytic activities of these photocatalysts are highlighted to provide fundamental guidance to rational design of efficient MOF‐based photocatalyst materials for CO2 reduction. A perspective of future research directions, critical challenges to be met, and potential solutions in this research field concludes the discussion.  相似文献   

5.
Targeted drug delivery remains at the forefront of biomedical research but remains a challenge to date. Herein, the first superassembly of nanosized metal–organic polyhedra (MOP) and their biomimetic coatings of lipid bilayers are described to synergistically combine the advantages of micelles and supramolecular coordination cages for targeted drug delivery. The superassembly technique affords unique hydrophobic features that endow individual MOP to act as nanobuilding blocks and enable their superassembly into larger and well‐defined nanocarriers with homogeneous sizes over a broad range of diameters. Various cargos are controllably loaded into the MOP with high payloads, and the nanocages are then superassembled to form multidrug delivery systems. Additionally, functional nanoparticles are introduced into the superassemblies via a one‐pot process for versatile bioapplications. The MOP superassemblies are surface‐engineered with epidermal growth factor receptors and can be targeted to cancer cells. In vivo studies indicated the assemblies to have a substantial circulation half‐life of 5.6 h and to undergo renal clearance—characteristics needed for nanomedicines.  相似文献   

6.
7.
Protein‐based nanomedicine platforms for drug delivery comprise naturally self‐assembled protein subunits of the same protein or a combination of proteins making up a complete system. They are ideal for drug‐delivery platforms due to their biocompatibility and biodegradability coupled with low toxicity. A variety of proteins have been used and characterized for drug‐delivery systems, including the ferritin/apoferritin protein cage, plant‐derived viral capsids, the small Heat shock protein (sHsp) cage, albumin, soy and whey protein, collagen, and gelatin. There are many different types and shapes that have been prepared to deliver drug molecules using protein‐based platforms, including various protein cages, microspheres, nanoparticles, hydrogels, films, minirods, and minipellets. The protein cage is the most newly developed biomaterial for drug delivery and therapeutic applications. The uniform size, multifunctionality, and biodegradability push it to the frontier of drug delivery. In this Review, the recent strategic development of drug delivery is discussed with emphasis on polymer‐based, especially protein‐based, nanomedicine platforms for drug delivery. The advantages and disadvantages are also discussed for each type of protein‐based drug‐delivery system.

  相似文献   


8.
9.
Metal–organic frameworks (MOFs) with low density, high porosity, and easy tunability of functionality and structural properties, represent potential candidates for use as semiconductor materials. The rapid development of the semiconductor industry and the continuous miniaturization of feature sizes of integrated circuits toward the nanometer (nm) scale require novel semiconductor materials instead of traditional materials like silicon, germanium, and gallium arsenide etc. MOFs with advantageous properties of both the inorganic and the organic components promise to serve as the next generation of semiconductor materials for the microelectronics industry with the potential to be extremely stable, cheap, and mechanically flexible. Here, a perspective of recent research is provided, regarding the semiconducting properties of MOFs, bandgap studies, and their potential in microelectronic devices.  相似文献   

10.
Metal–organic framework (MOF)–polymer mixed‐matrix membranes (MMMs) have shown great potential and superior performance in gas separations. However, their sensing application has not been fully established yet. Herein, a rare example of using flexible MOF‐based MMMs as a fluorescent turn‐on sensor for the detection of hydrogen sulfide (H2S) is reported. These MOF‐based MMMs are readily prepared by mixing a highly stable aluminum‐based nano‐MOF (Al‐MIL‐53‐NO2) into poly(vinylidene fluoride) with high loadings up to 70%. Unlike the intrinsic fragility and poor processability of pure‐MOF membranes, these MMMs exhibit desirable flexibility and processability that are more suitable for practical sensing applications. The uniform distribution of Al‐MIL‐53‐NO2 particles combined with the permanent pores of MOFs enable these MMMs to show good water permeation flux and consequently have a full contact between the analyte and MOFs. The developed MMM sensor (70% MOF loading) thus shows a highly remarkable detection selectivity and sensitivity for H2S with an exceptionally low detection limit around 92.31 × 10?9m , three orders of magnitude lower than the reported powder‐form MOFs. This work demonstrates that it is feasible to develop flexible luminescent MOF‐based MMMs as a novel platform for chemical sensing applications.  相似文献   

11.
Bacterial infection is one of the most serious physiological conditions threatening human health. There is an increasing demand for more effective bacterial diagnosis and treatment through noninvasive theranostic approaches. Herein, a new strategy is reported to achieve in vivo metabolic labeling of bacteria through the use of MIL‐100 (Fe) nanoparticles (NPs) as the nanocarrier for precise delivery of 3‐azido‐d ‐alanine (d ‐AzAla). After intravenous injection, MIL‐100 (Fe) NPs can accumulate preferentially and degrade rapidly within the high H2O2 inflammatory environment, releasing d ‐AzAla in the process. d ‐AzAla is selectively integrated into the cell walls of bacteria, which is confirmed by fluorescence signals from clickable DBCO‐Cy5. Ultrasmall photosensitizer NPs with aggregation‐induced emission characteristics are subsequently designed to react with the modified bacteria through in vivo click chemistry. Through photodynamic therapy, the amount of bacteria on the infected tissue can be significantly reduced. Overall, this study demonstrates the advantages of metal–organic‐framework‐assisted bacteria metabolic labeling strategy for precise bacterial detection and therapy guided by fluorescence imaging.  相似文献   

12.
Endophthalmitis, derived from the infections of pathogens, is a common complication during the use of ophthalmology‐related biomaterials and after ophthalmic surgery. Herein, aiming at efficient photodynamic therapy (PDT) of bacterial infections and biofilm eradication of endophthalmitis, a pH‐responsive zeolitic imidazolate framework‐8‐polyacrylic acid (ZIF‐8‐PAA) material is constructed for bacterial infection–targeted delivery of ammonium methylbenzene blue (MB), a broad‐spectrum photosensitizer antibacterial agent. Polyacrylic acid (PAA) is incorporated into the system to achieve higher pH responsiveness and better drug loading capacity. MB‐loaded ZIF‐8‐PAA nanoparticles are modified with AgNO3/dopamine for in situ reduction of AgNO3 to silver nanoparticles (AgNPs), followed by a secondary modification with vancomycin/NH2‐polyethylene glycol (Van/NH2‐PEG), leading to the formation of a composite nanomaterial, ZIF‐8‐PAA‐MB@AgNPs@Van‐PEG. Dynamic light scattering, transmission electron microscopy, and UV–vis spectral analysis are used to explore the nanoparticles synthesis, drug loading and release, and related material properties. In terms of biological performance, in vitro antibacterial studies against three kinds of bacteria, i.e., Escherichia coli, Staphylococcus aureus, and methicillin‐resistant S. aureus, suggest an obvious superiority of PDT/AgNPs to any single strategy. Both in vitro retinal pigment epithelium cellular biocompatibility experiments and in vivo mice endophthalmitis models verify the biocompatibility and antibacterial function of the composite nanomaterials.  相似文献   

13.
During photodynamic therapy (PDT), severe hypoxia often occurs as an undesirable limitation of PDT owing to the O2‐consuming photodynamic process, compromising the effectiveness of PDT. To overcome this problem, several strategies aiming to improve tumor oxygenation are developed. Unlike these traditional approaches, an opposite method combining hypoxia‐activated prodrug and PDT may provide a promising strategy for cancer synergistic therapy. In light of this, azido‐/photosensitizer‐terminated UiO‐66 nanoscale metal–organic frameworks (UiO‐66‐H/N3 NMOFs) which serve as nanocarriers for the bioreductive prodrug banoxantrone (AQ4N) are engineered. Owing to the effective shielding of the nanoparticles, the stability of AQ4N is well preserved, highlighting the vital function of the nanocarriers. By virtue of strain‐promoted azide–alkyne cycloaddition, the nanocarriers are further decorated with a dense PEG layer to enhance their dispersion in the physiological environment and improve their therapeutic performance. Both in vitro and in vivo studies reveal that the O2‐depleting PDT process indeed aggravates intracellular/tumor hypoxia that activates the cytotoxicity of AQ4N through a cascade process, consequently achieving PDT‐induced and hypoxia‐activated synergistic therapy. Benefiting from the localized therapeutic effect of PDT and hypoxia‐activated cytotoxicity of AQ4N, this hybrid nanomedicine exhibits enhanced therapeutic efficacy with negligible systemic toxicity, making it a promising candidate for cancer therapy.  相似文献   

14.
The development of earth‐abundant, active, and stable catalysts is important for solar energy conversion. Metal‐organic frameworks (MOFs) have been viewed as a promising class of porous materials, which may have innovative application in photocatalysis. In this paper, three types of Fe‐based MOFs and their aminofunctionalized derivatives have been fabricated and systematically studied as water oxidation catalysts (WOCs) for oxygen evolution under visible light irradiation. MIL‐101(Fe) possesses a higher current density and earlier onset potential and exhibits excellent visible light‐driven oxygen evolution activity than the other Fe‐based catalysts. It speeds up the oxygen evolution reaction rate with the higher initial turnover frequencies value of 0.10 s?1. Our study demonstrates that Fe‐based MOFs as efficient WOCs are promising candidates for photocatalytic water oxidation process.  相似文献   

15.
16.
17.
Heterometallic metal–organic frameworks (MOFs) are constructed from two or more kinds of metal ions, while still remaining their original topologies. Due to distinct reaction kinetics during MOF formation, partial distribution of different metals within a single MOF crystal can lead to sophisticated heterogeneous nanostructures. Here, this study reports an investigation of reaction kinetics for different metal ions in a bimetallic MOF system, the ZIF‐8/67 (M(2‐mIM)2, M = Zn for ZIF‐8, and Co for ZIF‐67, 2‐mIM = 2‐methylimidazole), by in situ optical method. Distinct kinetics of the two metals forming single‐component MOFs are revealed, and when both Co and Zn ions are present in the starting solution, homogeneous distributions of the two metals are only achieved at high Co/Zn ratio, while at low Co/Zn ratio concentration gradient from Co‐rich cores to Zn‐rich shells is observed. Further, by adding the two metals in sequence, more sophisticated structures are achieved. Specifically, when Co2+ is added first, ZIF‐67@ZIF‐8/67 core–shell nanocrystals are achieved with tunable core/shell thickness ratio depending on the time intervals; while when Zn2+ is added first, only agglomerates of irregular shape form due to the weak nucleation ability of Zn2+.  相似文献   

18.
Solid‐state batteries (SSBs) are promising for safer energy storage, but their active loading and energy density have been limited by large interfacial impedance caused by the poor Li+ transport kinetics between the solid‐state electrolyte and the electrode materials. To address the interfacial issue and achieve higher energy density, herein, a novel solid‐like electrolyte (SLE) based on ionic‐liquid‐impregnated metal–organic framework nanocrystals (Li‐IL@MOF) is reported, which demonstrates excellent electrochemical properties, including a high room‐temperature ionic conductivity of 3.0 × 10‐4 S cm‐1, an improved Li+ transference number of 0.36, and good compatibilities against both Li metal and active electrodes with low interfacial resistances. The Li‐IL@MOF SLE is further integrated into a rechargeable Li|LiFePO4 SSB with an unprecedented active loading of 25 mg cm‐2, and the battery exhibits remarkable performance over a wide temperature range from ?20 up to 150 °C. Besides the intrinsically high ionic conductivity of Li‐IL@MOF, the unique interfacial contact between the SLE and the active electrodes owing to an interfacial wettability effect of the nanoconfined Li‐IL guests, which creates an effective 3D Li+ conductive network throughout the whole battery, is considered to be the key factor for the excellent performance of the SSB.  相似文献   

19.
20.
Covalent organic frameworks (COF) or metal–organic frameworks have attracted significant attention for various applications due to their intriguing tunable micro/mesopores and composition/functionality control. Herein, a coordination‐induced interlinked hybrid of imine‐based covalent organic frameworks and Mn‐based metal–organic frameworks (COF/Mn‐MOF) based on the Mn? N bond is reported. The effective molecular‐level coordination‐induced compositing of COF and MOF endows the hybrid with unique flower‐like microsphere morphology and superior lithium‐storage performances that originate from activated Mn centers and the aromatic benzene ring. In addition, hollow or core–shell MnS trapped in N and S codoped carbon (MnS@NS‐C‐g and MnS@NS‐C‐l) are also derived from the COF/Mn‐MOF hybrid and they exhibit good lithium‐storage properties. The design strategy of COF–MOF hybrid can shed light on the promising hybridization on porous organic framework composites with molecular‐level structural adjustment, nano/microsized morphology design, and property optimization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号