首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ability to rearrange microstructures and self‐stiffen in response to dynamic external mechanical stimuli is critical for biological tissues to adapt to the environment. While for most synthetic materials, subjecting to repeated mechanical stress lower than their yield point would lead to structural failure. Here, it is reported that the graphene‐based polydimethylsiloxane (PDMS) nanocomposite, a chemically and physically cross‐linked system, exhibits an increase in the storage modulus under low‐frequency, low‐amplitude dynamic compressive loading. Cross‐linking density statistics and molecular dynamics calculations show that the dynamic self‐stiffening could be attributed to the increase in physical cross‐linking density, resulted from the re‐alignment and re‐orientation of polymer chains along the surface of nano‐fillers that constitute an interphase. Consequently, the interfacial interaction between PDMS‐nano‐fillers and the mobility of polymer chain, which depend on the degree of chemical cross‐linking and temperature, are important factors defining the observed performance of self‐stiffening. The understanding of the dynamic self‐stiffening mechanism lays the ground for the future development of adaptive structural materials and bio‐compatible, load‐bearing materials for tissue engineering applications.  相似文献   

2.
The photochemistry of anthracene, a new class of photoresist for direct laser writing, is used to enable visible‐light‐gated control over the mechanical properties of 3D microstructures post‐manufacturing. The mechanical and viscoelastic properties (hardness, complex elastic modulus, and loss factor) of the microstructures are measured over the course of irradiation via dynamic mechanical analysis on the nanoscale. Irradiation of the microstructures leads to a strong hardening and stiffening effect due to the generation of additional crosslinks through the photodimerization of the anthracene functionalities. A relationship between the loss of fluorescence—a consequence of the photodimerization—and changes in the mechanical properties is established. The fluorescence thus serves as a proxy read‐out for the mechanical properties. These photoresponsive microstructures can potentially be used as “mechanical blank slates”: their mechanical properties can be readily adjusted using visible light to serve the demands of different applications and read out using their fluorescence.  相似文献   

3.
Structures that change their shape in response to external stimuli unfold possibilities for more efficient and versatile production of 3D objects. Direct laser writing (DLW) is a technique based on two‐photon polymerization that allows the fabrication of microstructures with complex 3D geometries. Here, it is shown that polymerization shrinkage in DLW can be utilized to create structures with locally controllable residual stresses that enable programmable, self‐bending behavior. To demonstrate this concept, planar and 3D‐structured sheets are preprogrammed to evolve into bio‐inspired shapes (lotus flowers and shark skins). The fundamental mechanisms that control the self‐bending behavior are identified and tested with microscale experiments. Based on the findings, an analytical model is introduced to quantitatively predict bending curvatures of the fabricated sheets. The proposed method enables simple fabrication of objects with complex geometries and precisely controllable shape morphing potential, while drastically reducing the required fabrication times for producing 3D, hierarchical microstructures over large areas in the order of square centimeters.  相似文献   

4.
The ability to selectively remove sections from 3D‐printed structures with high resolution remains a current challenge in 3D laser lithography. A novel photoresist is introduced to enable the additive fabrication of 3D microstructures at one wavelength and subsequent spatially controlled cleavage of the printed resist at another wavelength. The photoresist is composed of a difunctional acrylate cross‐linker containing a photolabile o‐nitrobenzyl ether moiety. 3D microstructures are written by photoinduced radical polymerization of acrylates using Ivocerin as photoinitiator upon exposure to 900 nm laser light. Subsequent scanning using a laser at 700 nm wavelength allows for the selective removal of the resist by photocleaving the o‐nitrobenzyl group. Both steps rely on two‐photon absorption. The fabricated and erased features are imaged using scanning electron microscopy (SEM) and laser scanning microscopy (LSM). In addition, a single wire bond is successfully eliminated from an array, proving the possibility of complete or partial removal of structures on demand.  相似文献   

5.
Most of the surface‐enhanced Raman scattering (SERS) substrates are 2D planar systems, which limits the SERS active area to a single Cartesian plane. Here, we fabricate 3D SERS substrates with the aim to break the traditional 2D SERS active area limitation, and to extend the SERS hotspots into the third dimension along the z‐axis. Our 3D SERS substrates are tailored with increased SERS hotspots in the z‐direction from tens of nanometers to tens of micrometers, increasing the hotspots in the z‐direction by at least an order of magnitude larger than the confocal volume (~1 μm) of most Raman spectrometers. Various hierarchical 3D SERS‐active microstructures are fabricated by combining 3D laser photolithography with Langmuir‐Blodgett nanoparticle assembly. 3D laser photolithography creates microstructured platforms required to extend the SERS‐active area into 3D, and the self‐assembly of Ag nanoparticles ensures homogeneous coating of SERS‐active Ag nanoparticles over the entire microstructured platforms. Large‐area 3D Raman imaging demonstrates that homogeneous signals can be collected throughout the entire 3D SERS substrates. We vary the morphology, height, and inclination angles of the 3D microstructures, where the inclination angle is found to exhibit strong influence on the SERS signals. We also demonstrate a potential application of this hierarchical 3D SERS substrate in information tagging, storage and encryption as SERS micro‐barcodes, where multiple micro‐barcodes can be created within a single set of microstructures.  相似文献   

6.
A simple strategy to realize new controllable 3D microstructures and a novel method to reversibly trapping and releasing microparticles are reported. This technique controls the height, shape, width, and arrangement of pillar arrays and realizes a series of special microstructures from 2‐pillar‐cell to 12 cell arrays, S‐shape, chain‐shape and triangle 3‐cell arrays by a combined top down/bottom up method: laser interference lithography and capillary force‐induced assembly. Due to the inherent features of this method, the whole time is less than 3 min and the fabricated area determined by the size of the laser beam can reach as much as 1 cm2, which shows this method is very simple, rapid, and high‐throughput. It is further demonstrated that the ‘mechanical hand’‐like 4‐cell arrays could be used to selectively trap/release microparticles with different sizes, e.g., 1.5, 2, or 3.5 μm, which are controlled by the period of the microstructures from 2.5 to 4 μm, and 6 μm. Finally, the ‘mechanical hand’‐like 4‐cell arrays are integrated into 100 μm‐width microfluidic channels prepared by ultraviolet photolithography, which shows that this technique is compatible with conventional microfabrication methods for on‐chip applications.  相似文献   

7.
Nanodiamonds are emerging as nanoscale quantum probes for bio‐sensing and imaging. This necessitates the development of new methods to accurately manipulate their position and orientation in aqueous solutions. The realization of an “active” nanodiamond (ND) swimmer in fluids, composed of a ND crystal containing nitrogen vacancy centers and a light‐driven self‐thermophoretic micromotor, is reported. The swimmer is propelled by a local temperature gradient created by laser illumination on its metal‐coated side. Its locomotion—from translational to rotational motion—is successfully controlled by shape‐dependent hydrodynamic interactions. The precise engineering of the swimmer's geometry is achieved by self‐assembly combined with physical vapor shadow growth. The optical addressability of the suspended ND swimmers is demonstrated by observing the electron spin resonance in the presence of magnetic fields. Active motion at the nanoscale enables new sensing capabilities combined with active transport including, potentially, in living organisms.  相似文献   

8.
Applying 3D direct laser writing, artificial hierarchical gecko‐type structures are designed and fabricated down to nanometer dimensions. In this way, the elastic modulus and the length scale of the gecko's setae are very closely matched. Direct laser writing is a very flexible rapid prototyping method allowing the fabrication of arbitrary nanostructures. Since the parameters of the structures can be easily changed, this technique is perfect for design studies of dry adhesives. Measuring the adhesional forces by atomic force microscopy, the influence of several design parameters like density, aspect ratio, and tip‐shape on dry adhesion performance are systematically examined. In this way, it is revealed that hierarchy is favorable for artificial gecko‐inspired dry adhesives made of stiff materials on the nanometer scale.  相似文献   

9.
Functional polymers possess outstanding uniqueness in fabricating intelligent devices such as sensors and actuators, but they are rarely used for converting mechanical energy into electric power. Here, a vitrimer based triboelectric nanogenerator (VTENG) is developed by embedding a layer of silver nanowire percolation network in a dynamic disulfide bond‐based vitrimer elastomer. In virtue of covalent dynamic disulfide bonds in the elastomer matrix, a thermal stimulus enables in situ healing if broken, on demand reconfiguration of shape, and assembly of more sophisticated structures of VTENG devices. On rupture or external damage, the structural integrity and conductivity of VTENG are restored under rapid thermal stimulus. The flexible and stretchable VTENG can be scaled up akin to jigsaw puzzles and transformed from 2D to 3D structures. It is demonstrated that this self‐healable and shape‐adaptive VTENG can be utilized for mechanical energy harvesters and self‐powered tactile/pressure sensors with extended lifetime and excellent design flexibility. These results show that the incorporation of organic materials into electronic devices can not only bestow functional properties but also provide new routes for flexible device fabrication.  相似文献   

10.
The advent of conductive self‐healing (CSH) hydrogels, a class of novel materials mimicking human skin, may change the trajectory of the industrial process because of their potential applications in soft robots, biomimetic prostheses, and health‐monitoring systems. Here, the development of a mechanically and electrically self‐healing hydrogel based on physically and chemically cross‐linked networks is reported. The autonomous intrinsic self‐healing of the hydrogel is attained through dynamic ionic interactions between carboxylic groups of poly(acrylic acid) and ferric ions. A covalent cross‐linking is used to support the mechanical structure of the hydrogel. Establishing a fair balance between the chemical and physical cross‐linking networks together with the conductive nanostructure of polypyrrole networks leads to a double network hydrogel with bulk conductivity, mechanical and electrical self‐healing properties (100% mechanical recovery in 2 min), ultrastretchability (1500%), and pressure sensitivity. The practical potential of CSH hydrogels is further revealed by their application in human motion detection and their 3D‐printing performance.  相似文献   

11.
An ultrafast, parallel, and beyond‐the‐master micropatterning technique for ultrathin (30?400 nm) nonabsorbing polymer films by diffraction of laser light through a 2D periodic aperture is reported. The redistribution of laser energy absorbed by the substrate causes self‐organization of polymer thin films in the form of wrinklelike surface relief structures caused by localized melting and freezing of the thin film. Unlike conventional laser ablation and laser writing processes, low laser fluence is employed to only passively swell the polymer as a pre‐ablative process without loss of material, and without absorption/reaction with incident radiation. Self‐organization in the thin polymer film, aided by the diffraction pattern, produces microstructures made up of thin raised lines. These regular microstructures have far more complex morphologies than the mask geometry and very narrow line widths that can be an order of magnitude smaller than the openings in the mask. The microstructure morphology is easily modulated by changing the film thickness, aperture size, and geometry, and by changing the diffraction pattern.  相似文献   

12.
Hierarchical self‐assembly of small abiotic molecular modules interacting through noncovalent forces is increasingly being used to generate functional structures and materials for electronic, catalytic, and biomedical applications. The greatest control over the geometry in H‐bond supramolecular architectures, especially in H‐bonded supramolecular polymers, can be achieved by using conformationally rigid molecular modules undergoing self‐assembly through strong H‐bonds. Their binding strength depends on the multiplicity of the H‐bonds, the nature of donor/acceptor pairs and their secondary attractive/repulsive interactions. Here a functionalized molecular module is described, which is capable of self‐associating through self‐complementary H‐bonding patterns comprising four strong and two medium‐strength H‐bonds to form dimers. The self‐association of these phenylpyrimidine‐based dimers through directional H‐bonding between two lateral pyridin‐2(1H)‐one units of neighboring molecules allows the formation of highly compact 1D supramolecular polymers by self‐assembly on graphite. A concentration‐dependent study by scanning tunneling microscopy at the solid–liquid interface, corroborated by dispersion‐corrected density functional studies, reveals the controlled generation of either linear supramolecular 2D arrays, or long helical supramolecular polymers with a high shape persistence.  相似文献   

13.
Abstract

High bit‐rate digital subscriber lines (HDSL) technology is a new technology that may provide bi‐directional transmission at a rate of 1.544 Mb/s in conventional copper wires. A transceiver system for dual‐simplex (DSX)‐HDSL is presented. Simulation results show that the DSX‐HDSL system combined with simple pair‐selection can provide 18Kft/24AWG service distance without line repeaters. In the presented DSX‐HDSL transceiver, 2B1Q code with (1‐D) precoding is used to reduce the inter‐symbol interference (ISI) and the dynamic range of signal. Hence, a 12‐bit or less A/D converter can satisfy the performance requirement. In addition, another switchable (1‐D) filter is used in the receiver to shorten the duration of channel response, therefore a (5, 32) hybrid‐decision‐feedback‐equalizer (DFE) can obtain an adequate performance.  相似文献   

14.
Magnetically active shape‐reconfigurable microarrays undergo programmed actuation according to the arrangement of magnetic dipoles within the structures, achieving complex twisting and bending deformations. Cylindrical micropillars have been widely used to date, whose circular cross‐sections lead to identical actuation regardless of the actuating direction. In this study, micropillars with triangular or rectangular cross‐sections are designed and fabricated to introduce preferential actuation directions and explore the limits of their actuation. Using such structures, controlled liquid wetting is demonstrated on micropillar surfaces. Liquid droplets pinned on magnetic micropillar arrays undergo directional spreading when the pillars are actuated as depinning of the droplets is enabled only in certain directions. The enhanced deformation due to direction dependent magneto‐mechanical actuation suggests that micropillar arrays can be fundamentally tailored to possess application specific responses and opens up opportunities to exploit more complex designs such as micropillars with polygonal cross sections. Such tunable wetting of liquids on microarray surfaces has potential to improve printing technologies via contactless reconfiguration of stamp geometry by magnetic field manipulation.  相似文献   

15.
Photoactivated reversible addition fragmentation chain transfer (RAFT)‐based dynamic covalent chemistry is incorporated into liquid crystalline networks (LCNs) to facilitate spatiotemporal control of alignment, domain structure, and birefringence. The RAFT‐based bond exchange process, which leads to stress relaxation, is used in a variety of conditions, to enable the LCN to achieve a near‐equilibrium structure and orientation upon irradiation. Once formed, and in the absence of subsequent triggering of the RAFT process, the (dis)order in the LCN and its associated birefringence are evidenced at all temperatures. Using this approach, the birefringence, including the formation of spatially patterned birefringent elements and surface‐active topographical features, is selectively tuned by adjusting the light dose, temperature, and cross‐linking density.  相似文献   

16.
Biological stimuli‐responsive DNA hydrogels have attracted much attention in the field of medical engineering owing to their unique phase transitions from gel to sol through cleavage of DNA cross‐linking points in response to specific biomolecular inputs. In this paper, a new class of biological stimuli‐responsive DNA hydrogels with a dynamically programmed DNA system that relies on a DNA circuit system through cascading toehold‐mediated DNA displacement reactions is constructed, allowing the catalytic cleavage of cross‐linking points and main chains in response to an appropriate DNA input. The dynamically programmed DNA hydrogels exhibit a significant sharp phase transition from gel to sol in comparison to another DNA hydrogel showing noncatalytic cleavage of cross‐linking points due to synchronization of the catalytic cleavage of cross‐linking points and the main chains. Further, the sol–gel phase transitions of the DNA hydrogels in response to the DNA input are easily tunable by changing the cross‐linking density. Additionally, with a structure‐switching aptamer, DNA hydrogels encapsulating PEGylated gold nanoparticles can be used as enzyme‐free signal amplifiers for the colorimetric detection of adenosine 5′‐triphosphate (ATP); this detection system provides simplicity and higher sensitivity (limit of detection: 5.6 × 10?6 m at 30 min) compared to other DNA hydrogel‐based ATP detection systems.  相似文献   

17.
Manipulating the anisotropy in 2D nanosheets is a promising way to tune or trigger functional properties at the nanoscale. Here, a novel approach is presented to introduce a one‐directional anisotropy in MoS2 nanosheets via chemical vapor deposition (CVD) onto rippled patterns prepared on ion‐sputtered SiO2/Si substrates. The optoelectronic properties of MoS2 are dramatically affected by the rippled MoS2 morphology both at the macro‐ and the nanoscale. In particular, strongly anisotropic phonon modes are observed depending on the polarization orientation with respect to the ripple axis. Moreover, the rippled morphology induces localization of strain and charge doping at the nanoscale, thus causing substantial redshifts of the phonon mode frequencies and a topography‐dependent modulation of the MoS2 workfunction, respectively. This study paves the way to a controllable tuning of the anisotropy via substrate pattern engineering in CVD‐grown 2D nanosheets.  相似文献   

18.
Direct mass‐transfer via liquid nanodroplets is one of the most powerful approaches for additive micro/nanofabrication. Electrohydrodynamic (EHD) dispensing has made the delivery of nanosized droplets containing diverse materials a practical reality; however, in its serial form it has insufficient throughput for large‐area processing. Here, a parallel, nanoscale EHD method is developed that offers both improved productivity and material diversity in 3D nanoprinting. The method exploits a double‐barreled glass nanopipette filled with material inks to parallelize nanodripping ejections, enabling a dual 3D nanoprinting process. It is discovered that an unusual electric field distribution created by cross talk of neighboring pipette apertures can be used to steer the microscopic ejection paths of the ink at will, enabling on‐demand control over shape, placement, and material mixing in 3D printed nanostructures. After thorough characterizations of the printing conditions, the parallel fabrication of nanomeshes and nanowalls of silver, CdSe/ZnS quantum dots, and their composites, with programmed designs is demonstrated. This method is expected to advance productivity in the heterogeneous integration of functional 3D nanodevices in a facile manner.  相似文献   

19.
Self‐assembled DNA origami nanostructures have a high degree of programmable spatial control that enables nanoscale molecular manipulations. A surface‐tethered, flexible DNA nanomesh is reported herein which spontaneously undergoes sharp, dynamic conformational transitions under physiological conditions. The transitions occur between two major macrostates: a spread state dominated by the interaction between the DNA nanomesh and the BSA/streptavidin surface and a surface‐avoiding contracted state. Due to a slow rate of stochastic transition events on the order of tens of minutes, the dynamic conformations of individual structures can be detected in situ with DNA PAINT microscopy. Time series localization data with automated imaging processing to track the dynamically changing radial distribution of structural markers are combined. Conformational distributions of tethered structures in buffers with elevated pH exhibit a calcium‐dependent domination of the spread state. This is likely due to electrostatic interactions between the structures and immobilized surface proteins (BSA and streptavidin). An interaction is observed in solution under similar buffer conditions with dynamic light scattering. Exchanging between solutions that promote one or the other state leads to in situ sample‐wide transitions between the states. The technique herein can be a useful tool for dynamic control and observation of nanoscale interactions and spatial relationships.  相似文献   

20.
Nanofibers/nanowires usually exhibit exceptionally low flexural rigidities and remarkable tolerance against mechanical bending, showing superior advantages in flexible electronics applications. Electrospinning is regarded as a powerful process for this 1D nanostructure; however, it can only be able to produce chaotic fibers that are incompatible with the well‐patterned microstructures in flexible electronics. Electro‐hydrodynamic (EHD) direct‐writing technology enables large‐scale deposition of highly aligned nanofibers in an additive, noncontact, real‐time adjustment, and individual control manner on rigid or flexible, planar or curved substrates, making it rather attractive in the fabrication of flexible electronics. In this Review, the ground‐breaking research progress in the field of EHD direct‐writing technology is summarized, including a brief chronology of EHD direct‐writing techniques, basic principles and alignment strategies, and applications in flexible electronics. Finally, future prospects are suggested to advance flexible electronics based on orderly arranged EHD direct‐written fibers. This technology overcomes the limitations of the resolution of fabrication and viscosity of ink of conventional inkjet printing, and represents major advances in manufacturing of flexible electronics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号