首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
选取草酸溶液电解液,采用低压恒压法与二次阳极氧化工艺制备了多孔阳极氧化铝膜(AAO)。借助扫描电镜(SEM),观察了电解液浓度和氧化时间对多孔阳极氧化铝膜的形貌、孔径和孔间距的影响,得到电流随时间的变化曲线。研究了多孔阳极氧化铝膜层厚度与电流密度及氧化时间之间的关系,探讨了多孔阳极氧化铝膜形成机理,优化了阳极氧化制备工艺。结果表明:利用低压恒压法,在氧化电压18 V,氧化时间12 h,氧化液浓度0.6 mol/L时,可制备孔径均匀、高度有序的多孔阳极氧化铝膜。  相似文献   

2.
多孔型阳极氧化铝膜是制备纳米材料的理想模板。以草酸为电解液研究了高纯铝的阳极氧化工艺,采用扫描电镜对多孔型阳极氧化铝膜的表面及断面形貌进行表征。讨论了阳极氧化电压和电解液温度对多孔阳极氧化铝膜的孔径及孔密度的影响。对氧化膜厚度的测定结果表明,当氧化时间为7 h时,氧化膜厚度达到最大值36μm。  相似文献   

3.
采用阳极氧化法,以硫酸为电解液制备了多孔氧化铝模板。讨论了氧化电压和电解液温度对多孔阳极氧化铝膜的孔径的影响。试验结果表明,当氧化时间为6h时,氧化膜厚度达到最大值35.6μm。XRD分析结果证实,多孔氧化铝膜由非晶态的Al2O3组成。  相似文献   

4.
采用二次阳极氧化法,以草酸为电解液,制备纳米多孔氧化铝膜。利用扫描电镜、原子力显微镜和X射线衍射仪对氧化铝薄膜的微观形貌和相组成进行了表征,研究了二次阳极氧化法制备纳米多孔氧化铝膜的过程和成膜机理。结果表明:二次阳极氧化制备的纳米多孔氧化铝膜为非定型态,所得孔洞排列规则且分布均匀,平均孔径约为29 nm,孔密度为1.74×1010个/cm2。纳米多孔氧化铝膜的形成经历了阻挡层形成、微孔层形成和多孔层形成与长大等阶段。  相似文献   

5.
在8℃、0.3 mol/L浓度的草酸电解液中,施加40 V直流电压,采用两步阳极氧化法在高纯度铝箔上制备了多孔阳极氧化铝(AAO)膜。用场发射扫描电镜(FESEM)对一次、二次氧化制备的多孔氧化铝膜的表面形貌进行了表征。用XRD对原始铝箔及用二次氧化法制备的氧化铝膜的相结构进行了表征。用TEM观察了扩孔后多孔膜的通透性。结果表明,用二次阳极氧化制备的多孔膜明显比用一次法制得的更规则、有序和更厚,为非晶态的Al2O3。  相似文献   

6.
多孔阳极氧化铝模板制备工艺的研究以硫酸为电解液,采用二次阳极氧化工艺制备高度有序的多孔阳极氧化铝模板。研究了电解液浓度、阳极氧化电压和制备温度对多孔阳极氧化铝模板形貌和孔洞尺寸的影响,并以高氯酸和丙酮的混合溶液为电解液,利用第三次阳极氧化,一步实现了多孔阳极  相似文献   

7.
采用电泳沉积法在经阳极氧化的钛板表面形成羟基磷灰石涂层,研究了电解液浓度、电压、时间对氧化膜及涂层的影响,并进行了XRD和SEM表征。得出了阳极氧化的最佳工艺参数:电解液H2SO4的体积分数为20%,电压为120V,氧化时间为10min;电泳沉积的最佳工艺参数为:悬浮液的质量浓度为15g/L,沉积电压为250V,沉积时间为3min。  相似文献   

8.
铝合金阳极氧化膜层结构对粘接性能的影响   总被引:1,自引:0,他引:1  
目的研究铝合金阳极氧化膜层厚度与孔径对粘接性能的影响。方法制备铝合金阳极氧化膜层,配制电解液成分为120 g/L H_2SO_4,60 g/L H3PO4,7 g/L CH_3COOH,温度为22℃。通过改变阳极氧化时间和阳极氧化电压,制备膜层厚度不同和孔径尺寸不同的阳极氧化膜层结构,对阳极氧化膜试样涂TS-805胶粘剂,加压固化。通过拉伸剪切强度测试和湿热环境耐久性能测试,评价氧化膜层厚度和孔径对阳极氧化膜粘接性能的影响关系。结果随着膜层厚度的增加,拉剪强度逐渐升高,达到一定厚度后,膜的拉剪强度不再增加反而降低,当膜层厚度为9.41μm时,铝合金粘接件的拉剪强度最高为25.06 MPa。在膜层厚度一定的情况下,氧化膜层结构中孔径尺寸对拉剪强度的影响较小;氧化膜层的湿热环境耐久性能随着氧化时间的增加而提升,当氧化时间为30 min时,膜层湿热耐久性能最优;膜层湿热环境的耐久性能受膜层孔径尺寸的影响较小。结论铝合金阳极氧化膜层结构中多孔层的孔深对粘接接头的粘接强度有影响,膜层过厚在粘接过程中粘接界面易形成气孔而降低粘接的拉剪强度,膜层厚度的最佳值与选用胶粘剂的黏度和多孔层的孔径有关,孔径对粘接拉剪强度的影响不明显。铝合金粘接的湿热耐久性能与氧化膜的孔径关系较大,对同一氧化体系的氧化膜层结构,孔径越大,湿热耐久性能越高。氧化电压是控制氧化膜层结构的主要因素,可以通过控制氧化电压提高氧化膜层粘接的湿热耐久性能。  相似文献   

9.
在酸性电解液中,用阳极氧化法制备得到了多孔阳极氧化铝(anodic aluminum oxide,AAO) 模板.用金相显微镜观察了铝片表面上的晶界,并结合扫描电镜对多孔氧化铝薄膜进行了观察和表征.研究了影响多孔氧化铝模板孔洞有序性的关键性因素.实验结果表明,多孔阳极氧化铝膜的有序度依赖于铝箔预处理、电极材料、氧化电压和电解液类型及温度等因素.  相似文献   

10.
《铸造技术》2016,(6):1137-1140
对阳极氧化铝模板孔间距和孔径的因素进行分析,总结了氧化电压、氧化温度、退火预处理,以及稀土元素对其的影响。阳极氧化之前要对铝基底进行退火处理确保能制备出有序结构。实验时在电解液中添加适当的稀土元素,可以减小孔间距和孔径,并且使氧化膜的硬度增加。温度对于阳极氧化铝的制备影响不是很大,但是实验时最好还是在低温下进行。从总结中推出氧化电压是最主要的影响因素,实验中可以通过调节氧化电压来控制孔间距和孔径的大小。  相似文献   

11.
In as-welded state, each region of 2219 aluminum alloy TIG-welded joint shows diff erent microstructure and microhardness due to the diff erent welding heat cycles and the resulting evolution of second phases. After the post-weld heat treatment, both the amount and the size of the eutectic structure or θ phases decreased. Correspondingly, both the Cu content in α-Al matrix and the microhardness increased to a similar level in each region of the joint, and the tensile strength of the entire joint was greatly improved. Post-weld heat treatment played the role of solid solution strengthening and aging strengthening. After the post-weld heat treatment, the weld performance became similar to other regions, but weld reinforcements lost their reinforcing eff ect on the weld and their existence was more of an adverse eff ect. The joint without weld reinforcements after the post-weld heat treatment had the optimal tensile properties, and the specimens randomly crack in the weld zone.  相似文献   

12.
After nearly two years' tense construction, the first phase of industrialized base of Shenyang Research Institute of Foundry (SRIF), located at the Tiexi Casting and Forging Industrial Park in the west of Tiexi District, has now been completed and formally put into operation.  相似文献   

13.
Institute of Process Engineering, Chinese Academy of Sciences, China, has proposed a method for oxidative leaching of chromite with potassium hydroxide. Understanding the mechanism of chromite decomposition, especially in the potassium hydroxide fusion, is important for the optimization of the operating parameters of the oxidative leaching process. A traditional thermodynamic method is proposed and the thermal decomposition and the reaction decomposition during the oxidative leaching of chromite with KOH and oxygen is discussed, which suggests that chromite is mainly destroyed by reactions with KOH and oxygen. Meanwhile, equilibrium of the main reactions of the above process was calculated at different temperatures and oxygen partial pressures. The stable zones of productions, namely, K2CrO4 and Fe2O3, increase with the decrease of temperature, which indicates that higher temperature is not beneficial to thermodynamic reactions. In addition, a comparison of the general alkali methods is carried out, and it is concluded that the KOH leaching process is thermodynamically superior to the conventional chromate production process.  相似文献   

14.
The effect of isochronal heat treatments for 1h on variation of damping, hardness and microstructural change of the magnesium wrought alloy AZ61 was investigated. Damping and hardness behaviour could be attributed to the evolution of precipitation process. The influence of precipitation on damping behaviour was explained in the framework of the dislocation string model of Granato and Lücke.  相似文献   

15.
The Lanthanum-doped bismuth ferrite–lead titanate compositions of 0.5(Bi LaxFe1-xO3)–0.5(Pb Ti O3)(x = 0.05,0.10,0.15,0.20)(BLxF1-x-PT) were prepared by mixed oxide method.Structural characterization was performed by X-ray diffraction and shows a tetragonal structure at room temperature.The lattice parameter c/a ratio decreases with increasing of La(x = 0.05–0.20) concentration of the composites.The effect of charge carrier/ion hopping mechanism,conductivity,relaxation process and impedance parameters was studied using an impedance analyzer in a wide frequency range(102–106Hz) at different temperatures.The nature of Nyquist plot confirms the presence of bulk effects only,and non-Debye type of relaxation processes occurs in the composites.The electrical modulus exhibits an important role of the hopping mechanism in the electrical transport process of the materials.The ac conductivity and dc conductivity of the materials were studied,and the activation energy found to be 0.81,0.77,0.76 and 0.74 e V for all compositions of x = 0.05–0.20 at different temperatures(200–300 °C).  相似文献   

16.
The orientation relationships(ORs)between the martensite and the retained austenite in low-and medium-carbon steels after quenching–partitioning–tempering process were studied in this work.The ORs in the studied steels are identified by selected-area electron diffraction(SAED)as either K–S or N–W ORs.Meanwhile,the ORs were also studied based on numerical fitting of electron backscatter diffraction data method suggested by Miyamoto.The simulated K–S and N–W ORs in the low-index directions generally do not well coincide with the experimental pole figure,which may be attributed to both the orientation spread from the ideal variant orientations and high symmetry of the low-index directions.However,the simulated results coincide well with experimental pole figures in the high-index directions{123}_(bcc).A modified method with simplicity based on Miyamoto’s work was proposed.The results indicate that the ORs determined by modified method are similar to those determined by Miyamoto’method,that is,the OR is near K–S OR for the low-carbon Q–P–T steel,and with the increase of carbon content,the OR is closer to N–W OR in medium-carbon Q–P–T steel.  相似文献   

17.
This work was to reveal the residual stress profile in electron beam welded Ti-6Al-4V alloy plates(50 mm thick) by using finite element and contour measurement methods.A three-dimensional finite element model of 50-mmthick titanium component was proposed,in which a column–cone combined heat source model was used to simulate the temperature field and a thermo-elastic–plastic model to analyze residual stress in a weld joint based on ABAQUS software.Considering the uncertainty of welding simulation,the computation was calibrated by experimental data of contour measurement method.Both test and simulated results show that residual stresses on the surface and inside the weld zone are significantly different and present a narrow and large gradient feature in the weld joint.The peak tensile stress exceeds the yield strength of base materials inside weld,which are distinctly different from residual stress of the thin Ti-6Al-4V alloy plates presented in references before.  相似文献   

18.
Silicon carbide nanoparticle-reinforced nickel-based composites(Ni–Si CNP),with a Si CNPcontent ranged from1 to 3.5 wt%,were prepared using mechanical alloying and spark plasma sintering.In addition,unreinforced pure nickel samples were also prepared for comparative purposes.To characterize the microstructural properties of both the unreinforced pure nickel and the Ni–Si CNPcomposites transmission electron microscopy(TEM) was used,while their mechanical behavior was investigated using the Vickers pyramid method for hardness measurements and a universal tensile testing machine for tensile tests.TEM results showed an array of dislocation lines decorated in the sintered pure nickel sample,whereas,for the Ni–Si CNPcomposites,the presence of nano-dispersed Si CNPand twinning crystals was observed.These homogeneously distributed Si CNPwere found located either within the matrix,between twins or on grain boundaries.For the Ni–Si CNPcomposites,coerced coarsening of the Si CNPassembly occurred with increasing Si CNPcontent.Furthermore,the grain sizes of the Ni–Si CNPcomposites were much finer than that of the unreinforced pure nickel,which was considered to be due to the composite ball milling process.In all cases,the Ni–Si CNPcomposites showed higher strengths and hardness values than the unreinforced pure nickel,likely due to a combination of dispersion strengthening(Orowan effects) and particle strengthening(Hall–Petch effects).For the Ni–Si CNPcomposites,the strength increased initially and then decreased as a function of Si CNPcontent,whereas their elongation percentages decreased linearly.Compared to all materials tested,the Ni–Si CNPcomposite containing 1.5% Si C was found more superior considering both their strength and plastic properties.  相似文献   

19.
A new method was introduced to achieve directional growth of Sn crystals. Microstructures in liquid(Pb)/liquid(Sn) diffusion couples were investigated under various static magnetic fields. Results show that the β-Sn crystals mainly reveal an irregular dendritic morphology without or with a relatively low static magnetic field(B0.3 T). When the magnetic field is increased to 0.5 T, the β-Sn dendrites close to the final stage of growth begin to show some directional character. With a further increase in the magnetic field to a higher level(0.8–5 T), the β-Sn dendrites have an enhanced directional growth character, but the dendrites show a certain deflection. As the magnetic field is increased to 12 T, the directional growth of the β-Sn dendrites in the center of the couple is severely destroyed. The mechanism of the directional growth of the β-Sn crystals and the deflection of the β-Sn crystals with the application of static magnetic field was tentatively discussed.  相似文献   

20.
On the basis of the single-particle framework, a new theory on inclusion growth in metallurgical melts is developed to study the kinetics of inclusion growth on account of reaction and collision. The studies show that the early growth of inclusion depends on reaction growth and Brawnian motion collision, and where the former is decisive, the late growth depends on turbulence collision and Stokes' collision, and where the former is dominant; collision growth is very quick during the smelting process, lessened in the refining process, but nearly negligible in the continuous casting process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号