首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The dehydration of 1,3-butanediol was investigated over CeO2–ZrO2 catalysts prepared by impregnation at temperatures of 325–375 °C. Pure CeO2 selectively catalyzed the dehydration of 1,3-butanediol to form 3-buten-2-ol and 2-buten-1-ol, while pure ZrO2, which was less active than pure CeO2, catalyzed the dehydration to 3-buten-1-ol. In the CeO2/ZrO2 catalyst in which CeO2 was supported on zirconia, the presence of a small amount of CeO2 suppressed the formation of 3-buten-1-ol and induced the dehydration of 1,3-butanediol to form 3-buten-2-ol and 2-buten-1-ol and the subsequent dehydrogenation of 3-buten-2-ol to form 3-buten-2-one and butanone. The activity would be related to the redox features of CeO2. The monoclinic phase of zirconia support decreased while the cubic CeO2 phase increased as CeO2 content was increased. In contrast, in the ZrO2/CeO2 catalyst in which ZrO2 was supported on cubic CeO2, only the cubic CeO2 phase was observed and ZrO2 species appeared in the form of a solid solution of CeO2–ZrO2 with fluorite structure. Regardless of zirconia loading, ZrO2 species did not affect the catalytic activity of ZrO2/CeO2, which was controlled by CeO2 species.  相似文献   

3.
4.
The partial oxidation of methane has been studied by sequential pulse experiments with CH4 O2 CH4 and simultaneous pulse reaction of CH4/O2 (2/1) over Ni/CeO2, Ni/ZrO2 and Ni/Ce–ZrO2 catalysts. Over Ni/CeO2, CH4 dissociates on Ni and the resultant carbon species quickly migrate to the interface of Ni–CeO2, and then react with lattice oxygen of CeO2 to form CO. A synergistic effect between Ni and CeO2 support contributes to CH4 conversion. Over Ni/ZrO2, CH4 and O2 are activated on the surface of metallic Ni, and then adsorbed carbon reacts with adsorbed oxygen to produce CO, which is composed of the main path for the partial oxidation of methane. The addition of ceria to zirconia enhances CH4 dissociation and improves the carbon storage capacity. Moreover, it increases the storage capacity and mobility of oxygen in the catalyst, thus promoting carbon elimination.  相似文献   

5.
6.
7.
8.
9.
The influence of molybdenum oxide on the dispersion of vanadium oxide supported on niobia was investigated. A series of MoO3–V2O5/Nb2O5 catalysts with varying MoO3 content ranging from 1% to 5% (w/w) with fixed V2O5 content were prepared by impregnation of previously prepared 5 wt% V2O5/Nb2O5 with requisite amounts of ammonium molybdate solution. X-ray diffraction patterns indicate the presence of β-(Nb,V)2O5 phase with the addition of MoO3 up to a loading of 3 wt%. Temperature-programmed reduction (TPR) results suggest that the reducibility is decreasing with MoO3 loading. The results of temperature programmed desorption (TPD) of ammonia suggest that the acidity of the catalysts increased with the addition of MoO3. The catalytic properties of the catalysts in the ammoxidation of 3-picoline were correlated with the characterization data.  相似文献   

10.
A series of Rh catalysts on various supports (Al2O3, MgAl2O4, ZrO2, and ZrO2–CeO2) have been applied to H2 production from the ethanol steam reforming reaction. In terms of ethanol conversion at low temperatures (below 450 °C) with 1wt% Rh catalysts, the activity decreases in the order: Rh/ZrO2–CeO2 > Rh/Al2O3 > Rh/MgAl2O4 > Rh/ZrO2. Support plays a very important role on product selectivity at low temperatures (below 450 °C). Acidic or basic supports favor ethanol dehydration, while ethanol dehydrogenation is favored over neutral supports at low temperatures. The Rh/ZrO2–CeO2 catalyst exhibits the highest CO2 selectivity up to 550 °C, which is due to the highest water gas shift (WGS) activity at low temperatures. Among the catalysts evaluated in this study, the 2wt% Rh/ZrO2–CeO2 catalyst exhibited the highest H2 yield at 450 °C, which is possibly due to the high oxygen storage capacity of ZrO2–CeO2 resulting in efficient transfer of mobile oxygen species from the H2O molecule to the reaction intermediate.  相似文献   

11.
A series of WO3-promoted Cr2O3-based catalysts were prepared and tested for the simultaneous dehydrogenation and isomerization of n-butane to isobutene. It is found that a Cr2O3/WO3–ZrO2 system is an effective catalyst for this reaction; however, the catalytic behavior is dependent on Cr2O3 and WO3 contents, space velocity and temperature. 10 wt% Cr2O3/20 wt% WO3–ZrO2 can give high initial conversion and isobutene selectivity, but it deactivates rapidly due to the variation of surface properties and pore structure caused by carbon deposition. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
13.
14.
A series of MoO3-doped CeO2–ZrO2 catalysts were investigated for the selective catalytic reduction of NOx by NH3 (NH3-SCR). It was found that the added MoO3 significantly enhanced the activity of CeO2–ZrO2 catalyst for NH3-SCR of NOx in a wide temperature range and the optimum MoO3 loading is 5%. The highly dispersed MoO3 not only resulted in more Lewis acid and Brønsted acid sites formed on the catalyst surface, but also increased the redox property of the catalyst, all of which account for the enhanced SCR activity.  相似文献   

15.
《Fuel》1987,66(6):735-740
The hydrocracking of Athabasca bitumen was studied over SiO2MoO3 (80: 20wt%), 2.92 and 5.54 wt% CoO on SiO2MoO3, and commercially available CoOMoO3/Al2O3 catalysts at temperatures in the range 648–698 K for 2 h under an initial hydrogen pressure of 7.0 M Pa in a batch reactor. The reaction products were separated into coke, asphaltenes, resins, aromatics, saturates and gases. The severity of cracking increased with increased reaction temperature. At 698 K, asphaltene and resin yields were low (0.59 and 13.22 wt%, respectively) and gas yields high (40.5 wt%). SiO2MoO3 and CoO/SiO2MoO3 catalysts showed higher activity than commercial CoOMoO3/Al2O3 catalyst in the conversion of heavy fractions (asphaltenes and resins) and in the formation of light fractions (saturates and aromatics).  相似文献   

16.
The catalytic properties of V–Sb/ZrO2 and bulk Sb/V catalysts for the oxidative dehydrogenation of propane were studied. Samples were characterized by nitrogen adsorption, temperature-programmed reduction, temperature-programmed pyridine desorption and photoelectron spectroscopic techniques. Vanadia promotes the transition of tetragonal to monoclinic zirconia and the formation of ZrV2O7. Surface V and Sb oxide species do not appear to interact among them below monolayer coverage, but SbVO4 forms above monolayer. Simultaneously the excess of antimony forms α-Sb2O4. Activity and selectivity show no dependence on the acidity of the catalysts. However, there is a strong dependence of activity/selectivity on composition; surface vanadium species are active for propane oxidative dehydrogenation and the presence of Sb, affording rutile VSbO4 phase makes the system selective to C3H6, this is believed to be related to the redox cycle involving dispersed V5+ species and lattice reduced vanadium site in the rutile VSbO4 phase.  相似文献   

17.
18.
MoO3–V2O5/Al2O3 catalysts were characterized by B.E.T., XRD, LRS, XPS and TPR and the effect of MoO3 addition to alumina supported vanadia catalysts on the catalytic activity for the selective catalytic reduction of NO by ammonia was investigated. Upon the addition of MoO3, catalytic activity was enhanced and the particle size of V2O5 which is shown by the results of B.E.T., XRD and Raman spectroscopy decreased. This was one reason for increased catalytic activity. The results obtained by XPS and TPR showed that MoO3 addition to alumina supported vanadia catalysts increased the reducibility of vanadia and this was the another reason for synergy effect between MoO3 and V2O5 in MoO3–V2O5/Al2O3 catalysts.  相似文献   

19.
Oxidative dehydrogenation of ethane to ethylene was investigated over a series of MoO3 added V2O5–Al2O3 catalysts. The catalysts were characterized by BET, XRD, Laser-Raman and FT-IR spectroscopies and TPR technique. Catalytic tests were carried out in a fixed bed stainless steel reactor in the temperature range from 450 to 600 °C. Results revealed that the loading of molybdophosphoric acid (MPA) and the method of preparation had a clear influence on the catalytic performance. Among all, 10 wt.% MPA/V2O5–Al2O3 solid was found to possess superior activity and selectivity (X-C2H6 ~ 35% and S-C2H4 ~ 65%). Formation of Mo–V mixed oxide phases on Al2O3 appeared to be responsible for this improved performance. This best catalyst also exhibited good long-term stability over a period of ca. 36 h.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号