首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The enhanced production of light olefins from the catalytic cracking of FCC naphtha was investigated over a mesoporous ZSM-5 (Meso-Z) catalyst. The effects of acidity and pore structure on conversion, yields and selectivity to light olefins were studied in microactivity test (MAT) unit at 600 °C and different catalyst-to-naphtha (C/N) ratios. The catalytic performance of Meso-Z catalyst was compared with three conventional ZSM-5 catalysts having different SiO2/Al2O3 (Si/Al) ratios of 22 (Z-22), 27 (Z-27) and 150 (Z-150). The yields of propylene (16 wt%) and ethylene (10 wt%) were significantly higher for Meso-Z compared with the conventional ZSM-5 catalysts. Almost 90% of the olefins in the FCC naphtha feed were converted to lighter olefins, mostly propylene. The aromatics fraction in cracked naphtha almost doubled in all catalysts indicating some level of aromatization activity. The enhanced production of light olefins for Meso-Z is attributed to its small crystals that suppressed secondary and hydrogen transfer reactions and to its mesopores that offered easier transport and access to active sites.  相似文献   

2.
ZSM-5 catalysts were synthesized from rice husk ash without using template and their catalytic activity has been investigated in catalytic cracking of light naphtha. Effect of hydrothermal temperature (170, 180 and 190?°C) on physicochemical properties of catalysts was investigated by BET, FE-SEM, FTIR, XRD and TGA-DTG analyses. The XRD analysis showed that hydrothermal temperature had great influence on crystalline structure of ZSM-5. Sample which was synthesized at 180 °C showed high crystllinity without any undesired alumina-silicate phases. The FE-SEM analysis showed that synthesis of ZSM-5 at 180?°C led to showed micro-scale hexagonal-shaped morphology. Furthermore, the textural properties of synthesized samples depend on the synthesis temperature drastically. Results of catalytic activity test showed that the synthesis temperature has great influence on the activity of ZSM-5 and the sample which synthesized with at 180?°C showed the highest catalytic activity. Furthermore, in order to improve the catalyst performance and the stability, both of Lanthanum and Phosphorus were used in catalytic cracking of naphtha. 2.5La–3P/ZSM-5 produced the highest light olefins yield. Catalyst modification of ZSM-5 by La and P, increased the ratio of propylene/ethylene from 1 to 2.  相似文献   

3.
The performance of Pt–Sn-based catalyst, supported on ZSM-5 of different Si/Al ratios were investigated for simultaneous dehydrogenation and cracking of n-butane to produce light olefins. The catalysts were characterized by number of physio-chemical techniques including XRF, TEM, IR spectra, NH3-TPD and O2-pulse analysis. Increase in Si/Al ratio of zeolite support ZSM-5 significantly increased light olefin's selectivity, while feed conversion decreases due to lower acidity of support. The results indicated that both the n-butane cracking and dehydrogenation activity to light olefin's over Pt–Sn/ZSM-5 samples with increasing Si/Al ratios greatly enhanced catalytic performance. The catalysts were deactivated with time-on-stream due to the formation of carbon-containing deposits. A coke deposition was significantly related to catalyst activity, while at higher Si/Al ratio catalyst the coke precursors were depressed. These results suggested that the Pt–Sn/ZSM-5 catalyst of Si/Al ratio 300 is superior in achieving high total olefins selectivity (above 90 wt.%). The Pt–Sn/ZSM-5 also demonstrates resistance towards hydrothermal treatment, as analyzed through the three successive reaction-regeneration cycles.  相似文献   

4.
With the purpose of increasing the yield of light C2-C4 olefins in comparison with that in conventional catalytic cracking, we experimentally study the effect of temperature and catalyst-to-oil ratio on the distribution of the basic products of oil catalytic cracking on the bizeolite and industrial LUX catalysts. The bizeolite catalyst contains ZSM-5 and ultrastable Y zeolites in equivalent amounts, while the LUX catalyst contains 18 wt % of Y zeolite in the HRE form. As shown by the results of our tests, the yield of C2-C4 olefins and gasoline in the deep catalytic cracking of hydrotreated vacuum gasoil on the bizeolite catalyst within a range of catalyst-to-oil ratios of 5–7 and temperatures of 540–560°C reaches 32–36 and nearly 30 wt %, respectively. In cracking on the LUX catalyst under similar conditions, the yield of light olefins and gasoline is 12–16 and 37–45 wt %, respectively. The distribution of target products in the deep catalytic cracking of different hydrocarbon fractions (vacuum gasoil, gas condensate, its fraction distilled from the cut boiling below 216°C, and the hydrocracking heavy residue) on the bizeolite catalyst is studied. It is shown that the fractions of gas condensate and hydroc-racking residue can serve as an additional source of hydrocarbon raw materials in the production of olefins.  相似文献   

5.
ZSM-5 zeolites were synthesized by an in situ hydrothermal crystallization method on kaolin microspheres from an organic template-free solution. The as-synthesized samples were characterized by using X-ray diffraction, scanning electron microscopy, Fourier Transform Infrared spectrometry, N2 adsorption and desorption, and Temperature Programmed Desorption. The results showed that small-sized ZSM-5 crystallites with less than 1 micron in diameter were effectively formed on kaolin microspheres. The synthesized products indicated high hydrothermal stability and strong acidity. By mixing the H-type ZSM-5/CMK composite with a Fluid Catalytic Cracking base catalyst, the performance of the catalyst is then evaluated. The results of catalytic performance evaluation showed that with the addition of ZSM-5/CKM, it favored the production of light olefins such as propylene and butylenes by catalytic cracking of vacuum gas oil.  相似文献   

6.
设计合成了纳米、亚微米和微米级晶粒尺寸ZSM-5分子筛,并研究了其在两种反应温度下(510,650℃)对正庚烷催化制低碳烯烃反应行为。结果表明,在反应初始阶段,两种反应温度下晶粒尺寸对正庚烷转化率和产物选择性影响较小。但随着反应进行,纳米和亚微米ZSM-5在510℃下反应性能(低碳烯烃选择性及反应活性稳定性)相近且均高于微米ZSM-5;而650℃下,具有更短扩散路径和更大外表面积的纳米ZSM-5则体现出更高的反应性能。微米ZSM-5在两种温度下虽具有相对较高的低碳烯烃选择性,但其活性稳定性最低。进一步研究晶粒尺寸对费-托过程中石脑油催化裂解性能的影响发现,亚微米ZSM-5表现出最高的催化反应性能,这可能与反应原料的组成及相关反应途径变化有关。  相似文献   

7.
以高岭土微球为基体,在水热体系中成功地附晶生长了ZSM-5分子筛,并采用XRD、SEM、NH3-TPD和BET等测试手段对催化剂进行表征,考察高岭土附晶ZSM-5分子筛和对比催化剂在固定床微反装置上催化裂解正丁烷性能.结果表明,实验合成的高岭土附晶ZSM-5分子筛催化剂在正丁烷的催化裂解中具有更高的乙烯选择性,乙烯选择...  相似文献   

8.
PZSM-5分子筛催化剂用于烯烃催化裂解的研究   总被引:9,自引:0,他引:9  
以固定流化床研究了不同磷含量改性的ZSM-5分子筛对混合4烯烃催化裂解性能的影响,并以适当磷含量的催化剂进行了工艺条件试验。试验表明,磷与ZSM-5分子筛骨架中的羟基发生了化学作用,改善了催化剂的催化性能及水热稳定性;高负荷、高水比及适当增加磷的负载量,可以抑制烯烃裂解的氢转移反应,有利于提高丙烯选择性。  相似文献   

9.
制备了全结晶ZSM-5分子筛催化剂,采用XRD、SEM、N2物理吸附-脱附及NH3-TPD等对催化剂进行表征,并考察其用于碳四烯烃催化裂解制丙烯(OCC)反应的催化性能。结果表明,制备的全结晶ZSM-5分子筛催化剂比常规成型的催化剂具有更高的结晶度、更大的比表面积、更丰富的孔结构以及更多的活性中心。高空速有利于反应的进行,提高压力对反应不利,升高温度有利于提高产物丙烯收率。在实验室研究的基础上,将全结晶ZSM-5分子筛催化剂用于OCC工业装置,取得良好的应用效果。  相似文献   

10.
利用小型固定床实验装置对比研究了轻烃模型化合物的催化裂解性能,从优到劣的顺序依次是正构烯烃、正构烷烃、环烷烃、异构烷烃、芳香烃。正构烷烃、异构烷烃与环烷烃催化裂解的总低碳烯烃收率有较大差别,但是总低碳烯烃选择性却均在56.57%左右。研究了直馏石脑油的催化裂解性能,发现乙丙烯收率和总低碳烯烃收率随反应温度的升高及重时空速的降低而逐渐增大;在反应温度680℃、重时空速4.32 h-1和水油稀释比0.35的条件下,乙丙烯收率35.87%(质量),总低碳烯烃收率为41.94%(质量)。针对轻烃催化裂解提出了原料特征化参数KF,它是原料H/C原子比、相对密度与分子量的函数,能较好地表征轻烃原料的催化裂解性能。  相似文献   

11.
张晓华  施岩 《化学与粘合》2010,32(4):33-35,47
以催化重整石脑油为原料,以水热处理磷改性HZSM-5为催化剂,在小型固定床反应装置上,考察了水热处理磷改性方法制备催化剂的催化裂解性能。结果表明,磷改性HZSM-5经水热处理后与未改性HZSM-5相比,水热稳定性明显改善,当磷负载量为3%wt时,PZSM-5具有较高的活性和丙烯选择性。催化裂解反应过程中选择适宜的工艺条件可有效的抑制副反应的发生。综合考虑丙烯及双烯收率,确定最佳的反应条件为:温度650℃,体积空速4h-1,水油体积比0.75,反应压力0.2MPa。  相似文献   

12.
This study presents new experimental results on the direct conversion of crude oil to chemicals via steam-enhanced catalytic cracking. We have organized the experimental results with a kinetics model using crude oil and steam co-feed in a fixed-bed flow reactor at reaction temperatures of 625, 650, and 675°C over the Ce-Fe/ZSM-5 catalyst. The model let us find optimum conditions for crude oil conversion, and the order of the steam cracking reaction was 2.0 for heavy oil fractions and 1.0 for light oil fractions. The estimated activation energies for the steam cracking reactions ranged between 20 and 200 kJ/mol. Interestingly, the results from kinetic modelling helped in identifying a maximum yield of light olefins at an optimized residence time in the reactor at each temperature level. An equal propylene and ethylene yield was observed between 650 and 670°C, indicating a transition from dominating catalytic cracking at a lower temperature to a dominating thermal cracking at a higher temperature. The results illustrate that steam-enhanced catalytic cracking can be utilized to effectively convert crude oil into basic chemicals (52.1% C2-C4 light olefins and naphtha) at a moderate severity (650°C) as compared to the conventional high-temperature steam cracking process.  相似文献   

13.
阐述了石脑油催化裂解制低碳烯烃的机理;石脑油催化裂解催化剂体系,包括金属氧化物催化剂、沸石分子筛催化剂和复合催化剂及近年来国内外石脑油催化裂解催化剂的科研成果.并对石脑油生产低碳烯烃的催化裂解和蒸汽裂解两种工艺路线进行对比,表明石脑油催化裂解具有先进性,该领域的研究开发具有相当重要的意义。  相似文献   

14.
ZSM-5 zeolite has been hydrothermally synthesized in-situ on the external surface of calcined kaolinite in the presence of n-butylamine. This supported zeolite was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectroscopy and N2 adsorption. Several synthesis variables were systematically investigated, including SiO2 to Al2O3 ratio, pH, crystallization time, and crystallization temperature. After mixing the ZSM-5 with a Fluid Catalytic Cracking (FCC) catalyst, catalytic performance was evaluated by cracking vacuum gas oil (VGO) in a micro-fixed bed reactor. ZSM-5 addition was favorable for the production of light olefins by catalytic cracking of VGO.  相似文献   

15.
The effect of temperature, WHSV and Fe loading over HZSM-5 catalyst in thermal-catalytic cracking (TCC) of naphtha for the production of light olefins has been studied. The response surface defined by three most significant parameters is obtained from Box-Behnken design method and the optimal parameter set is found. The results show that ethylene increases with temperature, while propylene shows an optimum at 650 °C. Moderate WHSV is favorable for maximum production of light olefins. Addition of Fe to HZSM-5 has a favorable effect on the production of light olefins up to 6% of loading. Excess amount of loading decreases the conversion of naphtha, which leads to a drop in light olefin yields. The yield of light olefins (ethylene and propylene) at 670 °C, 44 hr−1 and 6 wt% Fe has been increased to 5.43 wt% compared to the unmodified HZSM-5 and reaches to 42.47 wt%.  相似文献   

16.
The objective of this work is to discuss the performance of Pt-Sn/slit-SAPO-34 novel catalyst for selective C3–C4 dehydrogenation to corresponding light olefins. The metallic contents, acidity, active metallic sites and metallic dispersion were determined using a number of physico-chemical techniques as it gives a justification for superior catalytic activity for dehydrogenation reaction. The Pt-Sn/slit-SAPO-34 catalyst was analyzed for dehydrogenation activity under optimized operating conditions; at atmospheric pressure, hydrogen to alkane (feed) molar ratio is 0.2, weight hourly space velocity 5 h?1 and temperature 585 °C. Around 40% light alkane conversion and above 95% of total olefins selectivity with 94% propene, 92% n-butene and about 84% iso-butene selectivity were achieved over Pt-Sn/slit-SAPO-34 novel catalyst. The catalyst was parametrically characterized over the above said operating conditions and effects of operating conditions on product distribution were discussed. The coke formation was inherently related to catalyst activity in dehydrogenation reaction and related to surface intermetallic ensemble effects; and ultimately the prominent stakeholder in catalyst deactivation. The novel catalysts also showed very good hydrothermal stability in a continuous reaction–regeneration cycles due to silica-based acidic structure of support. The results obtained over Pt-Sn/slit-SAPO-34 novel catalyst were compared with other Pt-Sn-based ZSM-5 and SAPO-34 supported catalysts of similar active metallic content under identical operating conditions.  相似文献   

17.
P改性是调变ZSM-5分子筛催化性能的重要手段。ZSM-5分子筛的P改性方法主要由磷酸、磷酸盐水溶液及有机P化合物浸渍或通过气相沉积等方法进行。改性ZSM-5分子筛中,P与Al物种相互作用, P物种主要以四配位形式存在,调变分子筛的酸性,通过对表面的修饰阻止骨架Al的脱除,提高ZSM-5分子筛的水热稳定性。P改性后,HZSM-5分子筛的酸密度,尤其是表面强酸密度下降,降低正碳离子机理反应中的二次反应,减少氢转移及齐聚,促进轻烯烃的生成。P改性修饰HZSM-5分子筛的孔口,提高择形性能,部分进入体相的P减少裂化过程中ZSM-5交叉口处大分子正碳离子的形成,减少双分子裂化机理中间体的生成,提高轻烯烃选择性。P改性ZSM-5分子筛强酸密度降低,择形效应提高,焦炭生成得到抑制,催化剂寿命延长。  相似文献   

18.
磷改性对ZSM-5分子筛石脑油催化裂解性能的影响   总被引:1,自引:0,他引:1  
以HZSM-5分子筛为载体,以磷酸氢二铵为磷源,采用等体积浸渍法制备了磷改性ZSM-5分子筛,采用吡啶吸附红外光谱法研究了磷改性ZSM-5分子筛的酸性及水热稳定性,在小型固定床反应装置上进行了石脑油催化裂解反应研究.结果表明,适量磷(3%)改性显著改善了ZSM-5分子筛的酸性和水热稳定性,提高了ZSM-5分子筛催化剂的...  相似文献   

19.
为了获得催化裂解制备低碳烯烃的高效催化剂,以等体积浸渍法制备了系列单金属(Ce, Y, Zr, Mn, Cu)及双金属(Zr-Ce, Mn-Ce, Y-Ce, Cu-Ce)改性ZSM-5-USY复合分子筛催化剂,通过XRD, NH3-TPD, BET等方法表征了其物理化学性质,并将所制备催化剂用于催化裂解正己烷。结果表明,催化剂的弱酸量越多,正己烷转化率及C2~C4烯烃选择性越高,Zr-Ce共改性分子筛的催化活性较优。水蒸气处理对Zr-Ce/ZSM-5-USY催化剂的酸性及催化裂解产物分布有较大影响,经水蒸气处理的催化剂性能更稳定,可将裂解产物中低碳烯烃的选择性由20.02% (催化剂未经水蒸气处理)提高到57.55% (催化剂经水蒸气处理4 h)。研究了0.25% Zr-0.5% Ce/ZSM-5-USY催化体系的裂解反应动力学,正己烷裂解为一级反应,裂解活化能为88.93 kJ/mol。  相似文献   

20.
杨远飞  李晓红  齐国祯 《广州化工》2012,40(14):122-123,156
分析甲醇制低碳烯烃工艺与轻石脑油催化裂解制低碳烯烃工艺的相似性,论述了二者结合的可能性。实验表明,甲醇的加入能够促进轻油裂解为低碳烯烃的反应。分析了提升管反应器中的温度分布、催化剂活性分布以及这些因素对甲醇制烯烃反应的影响。同时对不同的甲醇加入方式进行了分析,提出甲醇在提升管反应器的适宜加入位置。具有一定的工业应用前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号