首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
为了提高抗癌药物5-氟脲嘧啶(5-FU)对肿瘤细胞的靶向性及选择性,采用超声-透析法制备了具有pH敏感性的纳米药物载体5β-胆烷酸/O-羧甲基壳聚糖/磺胺地托辛(5β-CHA/OCMC/SDM)自组装水凝胶纳米粒,并用同样的方法将5-FU包载于纳米载体中进行体外释放研究。利用紫外分光光度计于269nm波长下检测5-FU的载药量和包封率以及释放浓度。结果表明,对于5β-CHA/OCMC/SDM纳米粒,药载比(药物和载体的质量比)增加到0.6时,载药量和包封率分别高达51.3%和85.4%。体外释药结果表明,在pH=7.4(人体正常组织的pH值)的磷酸盐缓冲溶液中,接枝5β-CHA的OCMC水凝胶纳米粒对5-FU具有良好的缓释效果,且随接枝量的增加缓释效果增强。pH6.8(肿瘤组织的pH值)时,接枝SDM的载药纳米粒迅速聚集并强烈释放,表现出良好的pH敏感性。  相似文献   

2.
以β-环糊精为原料,以载药量、包封率、综合评分为指标,考察了m(芦丁)∶m(β-环糊精聚合物微球)对载药量、包封率的影响。研究了不同m(芦丁)∶m(β-环糊精聚合物微球)在不同pH值条件下的释药情况。结果表明,当m(芦丁)∶m(β-环糊精聚合物微球)=0.02∶1时,包合效果较为理想。释药性能实验表明释药过程缓慢而持久,不同投料比释药在pH=1.2条件下总体较pH=7.4时更为缓慢,释药过程符合一级方程。  相似文献   

3.
以甲醛作为交联剂,通过悬浮交联法得到单分散性的微米级微球。采用分光光度法研究了壳聚糖微球对环丙沙星的载药释药性能,考察了环丙沙星初始浓度、pH、微球粒径大小、载药时间及温度对饱和吸附量的影响。结果表明,在初始浓度为200 mg/L,pH为8.80和时间为65 min,温度为37℃的优化条件下,壳聚糖微球对环丙沙星的载药量最大,最大吸附量为325 mg/g。在pH为7.4,温度为37℃的模拟人体肠胃缓冲溶液(NaH2PO4/NaOH)中研究了初始浓度以及释放时间对释放结果的影响。实验表明,环丙沙星在担载时与环丙沙星的初始浓度有关,浓度越大,担载量越大,但是担载效率和浓度之间无确定的线性关系。在环丙沙星释放初期有明显的释放现象,但是随着时间的推移,药物释放逐渐稳定,释药效率可达97%左右。  相似文献   

4.
5-氨基水杨酸-聚乙二醇高分子前药的制备及其释放行为   总被引:1,自引:0,他引:1  
用羧基活化法,以聚乙二醇(PEG)、丁二酸酐为原料,制备了5-氨基水杨酸(5-ASA)的高分子前药.傅立叶红外分析表明5-ASA已经成功与PEG共价键连接,水溶性实验表明前药的水溶性比5-ASA的明显增大.对高分子前药在磷酸缓冲溶液中进行释放研究,结果表明:pH值为2.0和5.4时5-ASA的释放量较少;而pH值为7.2时,5-ASA的释放速度相对较快且释放量较大.  相似文献   

5.
通过乳化交联法制备了负载有抗癌药物5-氟尿嘧啶的Fe3O4/羧甲基壳聚糖磁性载药微球。利用红外光谱(IR)和扫描电镜(SEM)对载药微球的结构与形貌进行了表征,研究了影响载药微球载药和释药性能的因素。IR测试显示载药微球中含有磁性Fe3O4;SEM照片显示载药微球尺寸均一,表面光滑。确定制备磁性载药微球的最佳条件为:5-氟尿嘧啶0.5g、磁性Fe3O40.2g、戊二醛8mL;磁性载药微球在温度为35~40℃、pH值为5.2的缓冲溶液中释药量达到峰值,适用于人体十二指肠肿瘤的治疗。  相似文献   

6.
以可溶性淀粉为原料,研究了淀粉微球在反相悬浮体系中不同温度下对阿司匹林的吸附行为,并考察其体外释放情况.结果表明:在实验条件范围内淀粉微球对阿司匹林的吸附量随着阿司匹林浓度的增加而增加.浓度相同时,温度越低,淀粉微球的吸附量也越大.吸附行为更符合Langmuir吸附模型,吸附为自发不可逆过程.总熵变是负值,焓变是主要的吸附驱动力.体外释放结果表明,阿司匹林淀粉微球聚合物在酸性介质中的释放行为更符合Higuchi方程,阿司匹林载药淀粉微球具有缓释作用.  相似文献   

7.
将聚乙二醇单甲醚(mPEG)醛化改性后,通过西佛碱反应接枝到自制的O-季铵化壳聚糖的NH2上,硼氢化钠还原制得N-mPEG接枝O-季铵化壳聚糖(QACS-mPEG),反相悬浮法制备二乙烯基砜交联QACS-mPEG微球。用FTIR、1 H NMR、EA和SEM对产物进行表征,并且以酮洛芬为模型药物研究微球的载药性能及释放行为。结果表明,mPEG和季铵盐基团的引入提高了N-mPEG-O-季铵化壳聚糖微球的载药量,为4.31mg/mg;载药N-mPEG-O-季铵化壳聚糖微球在模拟肠液的缓释效果优于胃液,微球释药具有pH响应性。  相似文献   

8.
以离子液体氯化1-烯丙基-3-甲基咪唑([Amim]Cl)为反应介质,利用原子转移自由基聚合(atom transfer radical polymerization,ATRP)法合成了微晶纤维素接枝有聚甲基丙烯酸(MCC-g-PMAA)的pH敏感性聚合物。用透析法将模型药物阿司匹林包覆在聚合物胶束内,并对载药胶束的体外药物释放机制进行研究。通过红外、核磁、透射电镜、X射线衍射和紫外分光光度计等分析手段对聚合物的结构、胶束形貌、胶束对阿司匹林的载药性能及释药性能进行了表征分析。结果表明:聚合物胶束能够在水溶液中自组装成球状胶束,对阿司匹林具有良好的包载效果,阿司匹林在碱性条件下的累积释放量大于酸性条件,载药胶束表现出了良好的pH敏感性和药物缓释性能。  相似文献   

9.
PLGA缓释微球的制备及其释药降解性能研究   总被引:1,自引:0,他引:1  
以巴比妥为球心物质,聚乙烯吡咯烷酮(PVP)为分散剂,采用溶剂挥发法制备了聚(乳酸-羟基乙酸)共聚物PLGA载药微球。透射电镜、光学显微镜测试表明微球球型规则,表面平滑,分布均匀,微球粒径在400nm左右,包覆效果良好,微球载药率1.039%,药物包封率42.34%。红外(FT—IR)分析得知,两种物质互相融为一体。以PH=7.4的PBS缓冲溶液为释放介质,用紫外分光光度计(UV)对微球的体外释药过程进行了实验,微球在前10天有明显的突释,此后缓慢释药,45天后药物释药率在80%以上。实验结果表明:PLGA是一种理想的控缓释材料。  相似文献   

10.
首次以头孢吡肟为球心物质,聚乙烯吡咯烷酮(PVP)为分散剂,采用溶剂挥发法制备了聚(乳酸-羟基乙酸)共聚物PLGA载药微球。透射电镜、光学显微镜测试表明微球球型规则,表面平滑,分布均匀,微球粒径在400nm左右,包覆效果良好,微球栽药率为6.50%,药物包封率为35.75%。经红外光谱(FT—IR)分析得知,两种物质互相融为一体。以pH=7.4的PBS缓冲溶液为释放介质,用紫外分光光度计(UV)对微球的体外释药过程进行了实验,微球在前10d有明显的突释,此后缓慢释药,最终药物释药率达65.30%以上。实验结果表明:PLGA是一种理想的控缓释材料。  相似文献   

11.
Microspheres were prepared from carboxymethylated chitosan (CM‐chitosan) and alginate by emulsion phase separation. Their structure and morphology were characterized with IR spectroscopy and scanning electron microscopy. Bovine serum albumin (BSA) was encapsulated in the microspheres to test the release behavior. The swelling behavior, encapsulation efficiency, and release behavior of BSA from the microspheres at different pHs and with a pH‐gradient condition were investigated. The BSA encapsulation efficiency was calculated to be 80%. The degree of swelling of the microspheres without BSA loaded at pH 7.2 was much higher than that at pH 1.0. The encapsulated BSA was quickly released in a Tris–HCl buffer (pH 7.2), whereas a small amount of BSA was released under acid conditions (pH 1.0) because of the strong electrostatic interaction between ? NH2 groups of CM‐chitosan and ? COOH groups of alginic acid and a dense structure caused by a Ca2+ crosslinked bridge. For the simulation of the processing of the drug under the conditions of the intestine, the microspheres were tested in a pH‐gradient medium, in which an acceleration of the release occurred at pH 7.4 after a lag time at a low pH (5.8–6.8). At pH 7.4, a large amount of BSA was released from the microspheres in a short time because of the rapid swelling of the microspheres. However, the release only depended on the diffusion of BSA at relatively low pHs, this resulted in a relatively low release. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 878–882, 2004  相似文献   

12.
The synthesis of a novel complex system designed for colon-targeting drug delivery was reported. The complex was prepared by dialdehyde konjac glucomannan and adipic dihydrazides to form steady Schiff base, and crosslinking with 5-aminosalicylic acid (5-ASA) through glutaraldehyde as a cross-linking agent. The structure was characterized by Fourier transform infrared (FTIR) spectroscopy, 13C NMR, wide angle X-ray diffraction (WAXRD) and thermogravimetric analysis. In vitro release of 5-ASA from the complex showed that the total released 5-ASA after 24 h in buffer solution at pH 1.2, 6.8, and 7.4 were 4, 59, and 21%, respectively. The release rate of 5-ASA can be controlled by tuning the pH value more effectively. The results indicated that the novel pH-sensitive complex could be potentially useful for colon-targeting drug delivery system.  相似文献   

13.
Crosslinked poly(vinyl alcohol) (CPVA) microspheres were first prepared via the suspension polymerization of vinyl acetate and the alcoholysis of poly(vinyl acetate). Afterwards, a two‐step method involving graft polymerization and Hofmann degradation was used to prepare functional poly(vinyl amine)‐grafted crosslinked poly(vinyl alcohol) (PVAm–CPVA) microspheres, onto which poly(vinyl amine) (PVAm) macromolecules were grafted. The graft polymerization of acrylamide (AM) on CPVA microspheres was performed with cerium salt as the initiator in an acidic aqueous medium, resulting in polyacrylamide (PAM)‐grafted CPVA microspheres. Subsequently, the grafted PAM was transformed into PVAm via the Hofmann degradation reaction, and PVAm–CPVA microspheres were prepared. The effects of the main factors on the graft polymerization and Hofmann degradation were examined, and the reaction mechanisms were researched in depth. The experimental results showed that for the graft polymerization of AM on CPVA microspheres initiated by cerium salt, the acid concentration and the amount of cerium salt affected the grafting degree of PAM greatly. For the Hofmann degradation reaction of the grafted PAM, the amination degree of PVAm–CPVA microspheres was obviously affected by the amount of sodium hypochlorite in the presence of sodium hydroxide. The preliminary adsorption tests showed that PVAm–CPVA microspheres were multifunctional and had strong adsorption ability for Fe(III) ions by chelation action and for chromate ions (CrO) by strong electrostatic interactions. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

14.
Poly(N-isopropylacrylamide) (PIPA) was synthesized by radical polymerization with 2,2′-azobisisobutyronitrile (AIBN) as an initiator and 3-mercaptopropionic acid (MPA) as a chain-transfer reagent in methanol (MeOH) at 70°C for 7 h. The resultant PIPA was grafted to polyallylamine hydrochloride (PAIAm · HCI) by amide formation under the influence of water-soluble carbodiimide 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC). The graft polymer was made into microspheres (MS) by chemical crosslinking. The pH-responsive drug release of the graft polymer microspheres was examined by releasing phenobarbital natrium (PN), which was carried on the microspheres by physical adsorption. A dynamic dialysis technique was used in the drug-release experiment and the drug-release-rate constants reflecting the drug release characteristic of polymer microspheres were obtained by constituting a mathematical model. The results indicated that the homopolymer PAIAm microspheres and the copolymer PAIAm-g-PIPA microspheres are both pH responsive to release PN and that in the neutral pH condition the release rate is the slowest. © 1995 John Wiley & Sons, Inc.  相似文献   

15.
Amino-modified polylactic acid (EPLA) nanofibre microspheres with a high porosity, large specific surface area, strong adsorption capacity, and rich in active amino groups were developed for drug delivery applications. Alendronate, a well-known antiresorptive agent, was chosen as a model drug to evaluate the loading capacity and release properties of the prepared EPLA microspheres. SEM micrographs clearly showed that the drug was loaded into the microspheres within the pores between the nanofibers and as well as being adsorbed on their surface. XRD and FTIR spectra analyses also confirmed drug loading. UV/Vis-absorption spectrophotometry was used to study the impact of various parameters, including adsorption time and initial concentration and pH value of the alendronate solution, on the microsphere drug-loading capacity. Under optimum conditions, EPLA microspheres exhibited a high alendronate adsorption capacity of up to 503?mg/g. In vitro release studies showed that alendronate-loaded EPLA nanofibre microspheres exhibited a perfect release performance, with alendronate being released in a sustained manner for approximately 15 days without any obvious initial burst. Therefore, EPLA nanofibre microspheres hold great potential as efficient, controlled release drug delivery carriers of alendronate.  相似文献   

16.
郭建峰  高保娇  王蕊欣 《化工学报》2010,61(6):1469-1474
采用接枝法将甲基丙烯酸(MAA)接枝于微米级硅胶表面,制得了接枝有甲基丙烯酸的接枝微粒PMAA/SiO2,采用红外光谱(FTIR)对其化学结构进行了表征,用金相显微镜观察了接枝微粒的形貌。采用静态法研究了功能微粒PMAA/SiO2对碱性氨基酸精氨酸吸附性能,考察了介质pH、离子强度及温度对其吸附性能的影响,探索了吸附机理。研究结果表明,在较大的pH范围内,接枝微粒PMAA/SiO2对碱性氨基酸精氨酸表现出很强的吸附能力,而对酸性氨基酸的吸附能力则很弱;随着介质pH值的增大,PMAA/SiO2对精氨酸的吸附能力呈现先增强后减弱的规律,在pH=7处,吸附容量可以达到239mg.g-1;温度升高,吸附容量减小;盐度增大,吸附容量降低。  相似文献   

17.
A new pH-responsive polymer (TKP–AA–PAA) was synthesized from the combination of tamarind kernel powder (TKP), acrylic acid (AA), and polyamidoamine (PAA) which was utilized for controlled release of 5-aminosalicylic acid (5-ASA) in buffer medium. The network structure of TKP–AA–PAA was obtained by irradiating the mixture of TKP, AA, and PAA in different proportion in presence of 2,2-dimethoxy-2-phenyl acetophenone as a photoinitiator. The dynamic and equilibrium swelling properties of the polymeric materials were studied as a function of pH and time in different buffer solutions similar to that of gastric and intestinal fluids. The controlled release kinetics of 5-ASA in simulated body fluid showed a Fickian diffusion behavior.  相似文献   

18.
郭英  李酽  谢静  蔡娇 《化学世界》2007,48(1):38-41,48
以自制阿司匹林为药物,壳聚糖为载体,采用乳化-化学交联法制备了阿司匹林-壳聚糖载药微球,确定了阿司匹林-壳聚糖载药微球的制备工艺条件,探讨搅拌速度、阿司匹林/壳聚糖质量比、交联剂戊二醛、乳化剂Span-80用量对微球的药物包封率、载药量和释药性能的影响。研究结果表明,室温条件下,以液体石蜡为介质,选用3%的壳聚糖冰醋酸溶液、按阿司匹林∶壳聚糖=1.5∶1、4%的戊二醛为交联剂、Span-80用量为体积比6%、中等搅拌速度制备出的微球药物包封率可达79%,微球粒径最小可达20 nm,制得的载药微球在16 h内对药物有良好的缓释作用,在25 h之内仍存在缓药效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号