首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper develops an efficient tabu search (TS) heuristic to solve the redundancy allocation problem for multi-state series–parallel systems. The system has a range of performance levels from perfect functioning to complete failure. Identical redundant elements are included in order to achieve a desirable level of availability. The elements of the system are characterized by their cost, performance and availability. These elements are chosen from a list of products available in the market. System availability is defined as the ability to satisfy consumer demand, which is represented as a piecewise cumulative load curve. A universal generating function technique is applied to evaluate system availability. The proposed TS heuristic determines the minimal cost system configuration under availability constraints. An originality of our approach is that it proceeds by dividing the search space into a set of disjoint subsets, and then by applying TS to each subset. The design problem, solved in this study, has been previously analyzed using genetic algorithms (GAs). Numerical results for the test problems from previous research are reported, and larger test problems are randomly generated. Comparisons show that the proposed TS out-performs GA solutions, in terms of both the solution quality and the execution time.  相似文献   

2.
In this article, a multi-state system with time redundancy where each system element has its own operation time is considered. In addition, the system total task must be performed during the restricted time. The reliability optimization problem is treated as finding the minimal cost system structure subject to the reliability constraint. A method for reliability optimization for systems with time redundancy is proposed. This method is based on the universal generating function technique for the reliability index computation and on genetic algorithm for the optimization. It provides a solution for the optimization problem for the complex series–parallel system and for the system with bridge topology. Two types of systems will illustrate the approach: systems with ordinary hot reserve and systems with work sharing between elements connected in parallel. Numerical examples are also given.  相似文献   

3.
The redundancy allocation problem is formulated with the objective of minimizing design cost, when the system exhibits a multi-state reliability behavior, given system-level performance constraints. When the multi-state nature of the system is considered, traditional solution methodologies are no longer valid. This study considers a multi-state series-parallel system (MSPS) with capacitated binary components that can provide different multi-state system performance levels. The different demand levels, which must be supplied during the system-operating period, result in the multi-state nature of the system. The new solution methodology offers several distinct benefits compared to traditional formulations of the MSPS redundancy allocation problem. For some systems, recognizing that different component versions yield different system performance is critical so that the overall system reliability estimation and associated design models the true system reliability behavior more realistically. The MSPS design problem, solved in this study, has been previously analyzed using genetic algorithms (GAs) and the universal generating function. The specific problem being addressed is one where there are multiple component choices, but once a component selection is made, only the same component type can be used to provide redundancy. This is the first time that the MSPS design problem has been addressed without using GAs. The heuristic offers more efficient and straightforward analyses. Solutions to three different problem types are obtained illustrating the simplicity and ease of application of the heuristic without compromising the intended optimization needs.  相似文献   

4.
In the redundancy optimization problem, the design goal is achieved by discrete choices made from components available in the market. In this paper, the problem is to find, under reliability constraints, the minimal cost configuration of a multi-state series–parallel system, which is subject to a specified maintenance policy. The number of maintenance teams is less than the number of repairable components, and a maintenance policy specifies the priorities between the system components. To take into account the dependencies resulting from the sharing of maintenance teams, the universal generating function approach is coupled with a Markov model. The resulting optimization approach has the advantage of being mainly analytical.  相似文献   

5.
The paper extends the universal generating function technique used for the analysis of multi-state systems to the case when the performance distributions of some elements depend on states of another element or group of elements.  相似文献   

6.
This paper presents a heuristic for a series-parallel system, exhibiting a multi-state behavior, minimizing the cost in order to provide a desired level of reliability. System reliability is defined as the ability to satisfy consumer demands which is presented as a piecewise cumulative load curve. The components are binary and chosen from a list of products available on the market, and are characterized in terms of their feeding capacity, reliability and cost. The solution approach makes use of a homogeneous collection of components to provide redundancy in a subsystem. The algorithm is applied to power systems found in the literature for various levels of reliability requirement. The heuristic offers a straightforward analysis and is efficient both in terms of solution quality and computational time, as compared to existing genetic algorithms and heuristics. Thus, the developed heuristic is attractive, and it can be easily and efficiently applied to numerous real-life systems.  相似文献   

7.
This paper discusses a type of redundancy that is typical in a multi-state system. It considers two interconnected multi-state systems where one multi-state system can satisfy its own stochastic demand and also can provide abundant resource (performance) to another system in order to improve the assisted system reliability. Traditional methods are usually not effective enough for reliability analysis for such multi-state systems because of the “dimensional curse” problem. This paper presents a new method for reliability evaluation for the repairable multi-state system considering such kind of redundancy. The proposed method is based on the combination of the universal generating function technique and random processes methods. The numerical example is presented to illustrate the proposed method.  相似文献   

8.
This paper deals with preventive maintenance optimization problem for multi-state systems (MSS). This problem was initially addressed and solved by Levitin and Lisnianski [Optimization of imperfect preventive maintenance for multi-state systems. Reliab Eng Syst Saf 2000;67:193–203]. It consists on finding an optimal sequence of maintenance actions which minimizes maintenance cost while providing the desired system reliability level. This paper proposes an approach which improves the results obtained by genetic algorithm (GENITOR) in Levitin and Lisnianski [Optimization of imperfect preventive maintenance for multi-state systems. Reliab Eng Syst Saf 2000;67:193–203]. The considered MSS have a range of performance levels and their reliability is defined to be the ability to meet a given demand. This reliability is evaluated by using the universal generating function technique. An optimization method based on the extended great deluge algorithm is proposed. This method has the advantage over other methods to be simple and requires less effort for its implementation. The developed algorithm is compared to than in Levitin and Lisnianski [Optimization of imperfect preventive maintenance for multi-state systems. Reliab Eng Syst Saf 2000;67:193–203] by using a reference example and two newly generated examples. This comparison shows that the extended great deluge gives the best solutions (i.e. those with minimal costs) for 8 instances among 10.  相似文献   

9.
The paper generalizes a preventive maintenance optimization problem to multi-state systems, which have a range of performance levels. Multi-state system reliability is defined as the ability to satisfy given demand. The reliability of system elements is characterized by their hazard functions. The possible preventive maintenance actions are characterized by their ability to affect the effective age of equipment. An algorithm is developed which obtains the sequence of maintenance actions providing system functioning with the desired level of reliability during its lifetime by minimum maintenance cost.To evaluate multi-state system reliability, a universal generating function technique is applied. A genetic algorithm (GA) is used as an optimization technique. Basic GA procedures adapted to the given problem are presented. Examples of the determination of optimal preventive maintenance plans are demonstrated.  相似文献   

10.
This paper formulates the joint redundancy and replacement schedule optimization problem generalized to multistate system, where the system and its components have a range of performance levels. Multistate system reliability is defined as the ability to maintain a specified performance level. The system elements are chosen from a list of available products on the market and the number of such elements is determined for each system component. Each element is characterized by its capacity, reliability and cost. The reliability of a system element is characterized by its lifetime distribution with the hazard rate, which increases with time. It is specified as the expected number of failures during different time intervals. The optimal system structure and the number of element replacements during the study period are defined as those which provide the desired level of system reliability with minimal sum of costs of capital investments, maintenance and unsupplied demand caused by failures. A universal generating function technique is applied to evaluate the multistate system reliability. A genetic algorithm is used as an optimization technique. Examples of determination of the optimal system structure and replacement schedule are provided.  相似文献   

11.
The paper suggests a modification of the generalized reliability block diagram (RBD) method for evaluating reliability and performance indices of multi-state systems with uncovered failures. Such systems (or their subsystems) can fail to perform their task in the case of undetected failure of any one of their elements. Examples of this effect can be found in computing systems, electrical power distribution networks, pipe lines carrying dangerous materials etc. The suggested method based on a universal generating function technique allows performance distribution of complex multi-state series-parallel system with uncovered failures to be obtained using a straightforward recursive procedure. Illustrative examples are presented.  相似文献   

12.
In this paper, we present a practical approach for the joint reliability-redundancy optimization of multi-state series-parallel systems. In addition to determining the optimal redundancy level for each parallel subsystem, this approach also aims at finding the optimal values for the variables that affect the component state distributions in each subsystem. The key point is that technical and organizational actions can affect the state transition rates of a multi-state component, and thus affect the state distribution of the component and the availability of the system. Taking this into consideration, we present an approach for determining the optimal versions and numbers of components and the optimal set of technical and organizational actions for each subsystem of a multi-state series-parallel system, so as to minimize the system cost while satisfying the system availability constraint. The approach might be considered to be the multi-state version of the joint system reliability-redundancy optimization methods.  相似文献   

13.
The redundancy optimization problem is a well known NP-hard problem which involves the selection of elements and redundancy levels to maximize system performance, given different system-level constraints. This article presents an efficient algorithm based on the harmony search algorithm (HSA) to solve this optimization problem. The HSA is a new nature-inspired algorithm which mimics the improvization process of music players. Two kinds of problems are considered in testing the proposed algorithm, with the first limited to the binary series–parallel system, where the problem consists of a selection of elements and redundancy levels used to maximize the system reliability given various system-level constraints; the second problem for its part concerns the multi-state series–parallel systems with performance levels ranging from perfect operation to complete failure, and in which identical redundant elements are included in order to achieve a desirable level of availability. Numerical results for test problems from previous research are reported and compared. The results of HSA showed that this algorithm could provide very good solutions when compared to those obtained through other approaches.  相似文献   

14.
A simple practical framework for predictive maintenance (PdM)-based scheduling of multi-state systems (MSS) is developed. The maintenance schedules are derived from a system-perspective using the failure times of the overall system as estimated from its performance degradation trends.

The system analyzed in this work is a flow transmission water pipe system. The various factors influencing PdM-based scheduling are identified and their impact on the system reliability and performance are quantitatively studied. The estimated times to replacement of the MSS may also be derived from the developed model.

The results of the model simulation demonstrate the significant impact of maintenance quality and the criteria for the call for maintenance (user demand) on the system reliability and mean performance characteristics. A slight improvement in maintenance quality is found to postpone the system replacement time by manifold. The consistency in the quality of maintenance work with minimal variance is also identified as a very important factor that enhances the system's future operational and downtime event predictability.

The studies also reveal that in order to reduce the frequency of maintenance actions, it is necessary to lower the minimum user demand from the system if possible, ensuring at the same time that the system still performs its intended function effectively.

The model proposed can be utilized to implement a PdM program in the industry with a few modifications to suit the individual industrial systems’ needs.  相似文献   


15.
A method for the evaluation of element reliability importance in a multi-state system is proposed. The method is based on the universal generating function technique. It provides an effective importance analysis tool for complex series–parallel multi-state systems with a different physical nature of performance and takes into account a required performance (demand). The method is also extended for the sensitivity analysis of important multi-state system output performance measures: mean system performance and mean unsupplied demand during operating period. Numerical examples are given.  相似文献   

16.
A new methodology for the reliability optimization of a k dissimilar-unit nonrepairable cold-standby redundant system is introduced in this paper. Each unit is composed of a number of independent components with generalized Erlang distributions of lifetimes arranged in a series–parallel configuration. We also propose an approximate technique to extend the model to the general types of nonconstant hazard functions. To evaluate the system reliability, we apply the shortest path technique in stochastic networks. The purchase cost of each component is assumed to be an increasing function of its expected lifetime. There are multiple component choices with different distribution parameters available for replacement with each component of the system. The objective of the reliability optimization problem is to select the best components, from the set of available components, to be placed in the standby system to minimize the initial purchase cost of the system, maximize the system mean time to failure, minimize the system variance of time to failure, and also maximize the system reliability at the mission time. The goal attainment method is used to solve a discrete time approximation of the original problem.   相似文献   

17.
We propose solution methods for multidisciplinary design optimization (MDO) under uncertainty. This is a class of stochastic optimization problems that engineers are often faced with in a realistic design process of complex systems. Our approach integrates solution methods for reliability-based design optimization (RBDO) with solution methods for deterministic MDO problems. The integration is enabled by the use of a deterministic equivalent formulation and the first order Taylor’s approximation in these RBDO methods. We discuss three specific combinations: the RBDO methods with the multidisciplinary feasibility method, the all-at-once method, and the individual disciplinary feasibility method. Numerical examples are provided to demonstrate the procedure. Anukal Chiralaksanakul is currently a full-time lecturer in the Graduate School of Business Administration at National Institute of Development Administration (NIDA), Bangkok, Thailand.  相似文献   

18.
This paper presents a general optimization methodology that merges game theory and multi-state system survivability theory. The defender has multiple alternatives of defense strategy that presumes separation and protection of system elements. The attacker also has multiple alternatives of its attack strategy based on a combination of different possible attack actions against different groups of system elements. The defender minimizes, and the attacker maximizes, the expected damage caused by the attack (taking into account the unreliability of system elements and the multi-state nature of complex series-parallel systems). The problem is defined as a two-period minmax non-cooperative game between the defender who moves first and the attacker who moves second. An exhaustive minmax optimization algorithm is presented based on a double-loop genetic algorithm for determining the solution. A universal generating function technique is applied for evaluating the losses caused by system performance reduction. Illustrative examples with solutions are presented.  相似文献   

19.
Usually engineers try to achieve the required reliability level with minimal cost. The problem of total investment cost minimization, subject to reliability constraints, is well known as the reliability optimization problem. When applied to multi‐state systems (MSS), the system has many performance levels, and reliability is considered as a measure of the ability of the system to meet the demand (required performance). In this case, the outage effect will be essentially different for units with different performance rate. Therefore, the performance of system components, as well as the demand, should be taken into account. In this paper, we present a technique for solving a family of MSS reliability optimization problems, such as structure optimization, optimal expansion, maintenance optimization and optimal multistage modernization. This technique combines a universal generating function (UGF) method used for fast reliability estimation of MSS and a genetic algorithm (GA) used as an optimization engine. The UGF method provides the ability to estimate relatively quickly different MSS reliability indices for series‐parallel and bridge structures. It can be applied to MSS with different physical nature of system performance measure. The GA is a robust, universal optimization tool that uses only estimates of solution quality to determine the direction of search. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

20.
Nowadays production systems are asked to perform their activities in a high uncertainty environment and to guarantee their performance in this environment. Therefore, they are asked to master risks that are part of their daily activities, to maintain the performance which is considered as their key success factor. Risks may cause serious effects that threaten the production systems and degrade their performance. Nevertheless, we cannot estimate the degradation that a risk may cause to system performance, since risk analysis methods found in the literature do not allow simulating the behaviour of the system in degraded mode. In order to help production systems to assess their performance in risk situations, we propose in this paper a model-based approach that enables assessing the performance of production systems in degraded mode. Our approach is based on function, interaction, structure (FIS) modelling framework that enables modelling complex system and its failures. The resulting model is converted into an executable simulation model based on a new class of Petri Nets (PNs) called predicate-transition, prioritised, synchronous (PTPS) PN. The obtained simulation model is then executed in order to obtain performance indicators in degraded mode. This tool is used during the system design, in order to study the impact of risks on the designed production system performance. It is also used to study an existing production system in order to analyse and optimise its behaviour in degraded mode. In this article, we present our tool and apply it to a special case of production systems which is a hospital sterilisation system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号