首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
基于径向基函数网络的大型电力变压器故障诊断   总被引:1,自引:0,他引:1  
研究了径向基函数(RBF)神经网络的模型结构及其在电力变压器故障诊断中的实现方法,介绍了变压器故障诊断的RBF模型.通过故障诊断及仿真实例分析,将RBF网络与BP网络的性能进行比较,得出RBF神经网络训练速度快、逼近误差小、能够更有效地解决电力变压器故障诊断问题的结论.  相似文献   

2.
研究采用径向基神经网络进行变压器故障诊断,以提高变压器故障诊断率。分析了径向基函数神经网络的结构和工作原理,确立了适合变压器故障诊断的网络学习算法,并设计了一个诊断变压器故障的三层径向基网络。通过采用MATLAB进行仿真实验。结果表明径向基神经网络是一很强的分类器,能够有效的对变压器故障进行诊断。  相似文献   

3.
基于径向基函数的集成神经网络在变压器故障诊断中的应用   总被引:10,自引:1,他引:10  
本文提出一个结合电气试验与油中溶解气体分析结果的故障诊断方法,采用具有良好分类能力的径向基函数集成神经网络,由于既充分利用了油中溶解气体分析结果中的有效信息,又考虑到一些对故障反映比较灵敏的电气试验的结果,因而该方法有助于提高故障诊断的准确性。诊断结果表明,本算法应用于电力变压器故障诊断具有较高的正判率。  相似文献   

4.
基于动态聚类算法径向基函数网络的配电网线损计算   总被引:12,自引:1,他引:12  
提出了基于径向基函数网络的计算配电网线损的实用方法。对有代表性的配电线路的线损与特征参数的样本数据,采用一种新的动态聚类算法进行聚类,来确定RBF网络的隐含层节点,不仅聚类速度快,而且隐含层节点数的优化提高了网络的利用效率。利用RBF网络强的拟合特性映射线损与特征参数之间复杂的非线性关系,使网络学习了配电线路在结构参数和运行参数变化时线损的趋势规律。以68条配电线路数据为例,仿真结果验证了文中提出的方法具有网络模型简单、学习速度快、线损计算精度高等优点。  相似文献   

5.
基于径向基函数神经网络的在线分布式故障诊断系统   总被引:5,自引:3,他引:5  
作者建议使用分布式智能系统解决大规模电力网络的实时故障诊断问题,并为此提出了一种新的基于最小度排序的图形分割方法,它能够将大规模电力网络有效地分割为给定数目的连通子网络,并且各子网络的故障诊断负担近似相等,同时每个网络边界元件的数目最小。然后用径向基函数神经网络完成各子网络的故障诊断。所提出的分布式智能故障诊断系统已使用稀疏存储技术编程实现,并在IEEE14母线、30母线和118母线系统中进行了仿真研究。计算机仿真结果表明该故障诊断系统能有效地解决大规模电力网络的故障诊断问题。  相似文献   

6.
基于油中溶解气体分析法,采用径向基函数(radicalbasisfunction,RBF)神经网络模型对电力变压器进行故障诊断。为了提高诊断模型的辨识精度,分两步对RBF神经网络的模型参数进行辨识:首先采用减聚类算法确定RBF神经网络隐含层基函数的中心点,然后采用量子粒子群优化(quantum-behavedparticleswarmopti-mization,QPs0)算法求解基函数的宽度以及隐含层与输出层的连接权重。仿真实验结果表明,该方法的故障诊断正确率较高,达90.67%。  相似文献   

7.
该文针对RBF神经网络的知识存储和诊断过程是一个黑箱,对运行人员不透明,且当电网拓扑结构发生变化或扩展时,神经网络只能重新训练等问题,推导并建立了RBF神经网络和模糊控制系统之间的等值关系,使得蕴含在RBF神经网络权重中的知识转变为等值模糊控制系统中用语言表述的规则。在此基础上,针对电网结构发生变化或扩展情况,提出了RBF神经网络的局部重新训练新算法。提出的基于RBF神经网络和等值模糊控制系统的故障诊断方法在IEEEll8母线系统中进行了仿真试验,结果表明:基于RBF网络与等值模糊系统的故障诊断方法诊断知识易于理解,诊断过程透明,并能适应电网拓扑结构发生变化或扩展的情况,效果理想。  相似文献   

8.
一种基于径向基函数的短期负荷预测方法   总被引:19,自引:5,他引:19  
赵剑剑  张步涵  程时杰  陆俭 《电网技术》2003,27(6):22-25,32
为克服传统K均值聚类法局部寻优的缺陷,提出了基于确定性退火聚类选取径向基函数(RBF)网络隐层节点中心的方法,并采用遗传算法有效地解决了径向基函数网络的学习问题。在选择学习样本时,根据相似度方法,综合考虑了日期类型、星期类型、天气因素和曲线特性的影响。实际应用表明本方法能够改善预测精度,提高预测速度。  相似文献   

9.
探讨了采用径向基神经网络对开关磁阻电动机定子径向力进行建模的方法。考虑到定子径向力模型中的两个输入量,即绕组电流和转子位置,取值范围较大,本文提出了先对输入量进行归一化处理,使得基函数的中心映射在[0,1]的闭区间内,再使用最近邻聚类和最速梯度下降法对网络进行训练的方法。文中给出了径向基神经网络和误差反传神经网络在建模精度和收敛速度上的比较,结果证实径向基函数神经网络除了具有很强的非线性逼近精度和泛化能力外,在给定同样的隐层神经元结构、网络学习率和目标误差,径向基神经网络在定子径向力非线性模型的训练过程中收敛速度更快,网络学习效率更高。  相似文献   

10.
将一种基于最近邻聚类学习算法的动态自适应径向基函数(RBF)网络应用于非线性时间序列的模式识别。这种方法解决了BP网络难以解决的局部极小值问题,并且在冰箱的制冷性能识别中得到了令人满意的效果。  相似文献   

11.
改进型组合RBF神经网络的变压器故障诊断   总被引:12,自引:8,他引:12  
提出了一种在逼近能力、分类能力、学习速度等方面都优于BP神经网络的径向基函数神经网络和组合诊断的概念,并将其应用到变压器DGA故障诊断中。在处理输入数据和改进训练方法后,组合RBF神经网络诊断变压器故障训练速度快、收敛精度高、诊断准确。  相似文献   

12.
基于径向基函数神经网络的电网模糊元胞故障诊断   总被引:1,自引:0,他引:1  
提出了基于径向基函数神经网络的电网模糊元胞故障诊断方法,旨在有效解决神经网络应用于电网故障诊断所面临的适应网络拓扑结构变化的可移植性问题。该方法以单个线路、母线和变压器为元胞对象,以保护各元胞的所有关联保护和对应的断路器为输入,建立了元胞通用神经网络诊断模型,并给出了故障诊断时模型的自动生成方法。此外,考虑到电网故障信息存在不完备性和不确定性,本文采用模糊矢状图来描述电网元件、保护和断路器之间的逻辑推理关系,并提取出蕴含不确定性的模糊推理规则,用于训练元胞通用神经网络。算例仿真结果表明,该方法简单、有效,能处理各种复杂故障情况,且能有效适应网络拓扑结构的变化,具有良好的容错性和可移植性。  相似文献   

13.
针对电站回热系统出现的故障问题,提出用MATLAB中径向基函数神经网络来进行诊断,此方法具有很好的稳定性,适用于离线学习、在线分析和诊断。  相似文献   

14.
在变压器故障诊断中,目前BP神经网络算法存在训练样本分布不均匀,收敛速度慢、容易陷于局部极小点等问题,导致整体的诊断性能下降。通过对模糊聚类及LM算法改进的神经网络深入研究,并引入变压器故障诊断中,该算法应用模糊聚类对搜集到的样本预处理,提高样本的质量,再用LM算法改进的神经网络来优化搜索方向,可以实现网络训练速度及测试精度的提高。通过实例仿真实验,验证了该方法能够有效诊断出变压器的故障。  相似文献   

15.
电力负荷的径向基函数神经网络模型预测   总被引:1,自引:0,他引:1  
李程  谭阳红 《广东电力》2010,23(5):1-3,11
由于基于反向传播(back propagation,BP)的神经网络模型自身固有的缺点,其电力负荷预测结果不理想,而径向基函数(radial basis function,RBF)神经网络模型具有全局逼近的性质,不存在局部最小问题,为此,针对中长期电力负荷预测,给出了RBF的预测原理,推导权值的更新方式,并和BP方法结果进行对比分析,结果证明基于RBF神经网络模型的方法收敛速度快、预报精度高、误差小。  相似文献   

16.
基于粒子群优化神经网络的变压器故障诊断   总被引:6,自引:2,他引:6  
王晓霞  王涛 《高电压技术》2008,34(11):2362-2367
为克服电气分析应用中误差反向传播(BP)神经网络存在的不足,提出了一种利用改进粒子群算法优化神经网络的变压器故障诊断新方法。该法的惯性权重自适应调整,以平衡局部和全局搜索能力;收缩因子加快算法的收敛速度,有利于更快地收敛于全局最优解。利用改进的粒子群算法优化神经网络参数,并结合BP算法训练网络可有效地克服常规BP算法训练网络权值和阈值收敛速度慢、易陷入局部极小和遗传算法独立训练神经网络速度缓慢等缺点。最后,进行变压器故障实例分析的仿真结果表明,该算法具有较快的收敛速度和较高的诊断准确度,证实了该方法的正确性和有效性。  相似文献   

17.
电力变压器是电网的核心设备之一。变压器故障一直是危及电网安全的主要因素。因此研究有效的故障诊断方法具有十分重大的现实意义。以BP网络为例。介绍了基于油中溶解气体分析的变压器神经网络故障诊断方法。试验结果表明。该方法是有效可行的,具有一定的实际应用价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号