首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The three-dimensional structure of cytochrome coxidase (COX) reveals two potential input proton channels connecting the redox core of the enzyme with the negatively charged (N-) aqueous phase. These are denoted as the K-channel (for the highly conserved lysine residue, K362 in Rhodobacter sphaeroides COX) and the D-channel (for the highly conserved aspartate gating the channel at the N-side, D132 in R. sphaeroides). In this paper, it is shown that the K362M mutant form of COX from R. sphaeroides, although unable to turnover with dioxygen as electron acceptor, can utilize hydrogen peroxide as an electron acceptor, with either cytochrome c or ferrocyanide as electron donors, with turnover that is close to that of the wild-type enzyme. The peroxidase activity is similar to that of the wild-type oxidase and is coupled to the generation of a membrane potential and to proton pumping. In contrast, no peroxidase activity is revealed in the D-channel mutants of COX, D132N, and E286Q. Reduction by dithionite of heme a3 in the fully oxidized oxidase is severely inhibited in the K362M mutant, but not in the D132N mutant. Apparently, mutations in the D-channel arrest COX turnover by inhibiting proton uptake associated with the proton-pumping peroxidase phase of the COX catalytic cycle. In contrast, the K-channel appears to be dispensable for the peroxidase phase of the catalytic cycle, but is required for the initial reduction of the heme-copper binuclear center in the first half of the catalytic cycle.  相似文献   

2.
The final step of the catalytic cycle of cytochrome oxidase, the reduction of oxyferryl heme a3 in compound F, was investigated using a binuclear polypyridine ruthenium complex (Ru2C) as a photoactive reducing agent. The net charge of +4 on Ru2C allows it to bind electrostatically near CuA in subunit II of cytochrome oxidase. Photoexcitation of Ru2C with a laser flash results in formation of a metal-to-ligand charge-transfer excited state, Ru2C, which rapidly transfers an electron to CuA of cytochrome oxidase from either beef heart or Rhodobacter sphaeroides. This is followed by reversible electron transfer from CuA to heme a with forward and reverse rate constants of k1 = 9.3 x 10(4) s-1 and k-1 = 1.7 x 10(4) s-1 for R. sphaeroides cytochrome oxidase in the resting state. Compound F was prepared by treating the resting enzyme with excess hydrogen peroxide. The value of the rate constant k1 is the same in compound F where heme a3 is in the oxyferryl form as in the resting enzyme where heme a3 is ferric. Reduction of heme a in compound F is followed by electron transfer from heme a to oxyferryl heme a3 with a rate constant of 700 s-1, as indicated by transients at 605 and 580 nm. No delay between heme a reoxidation and oxyferryl heme a3 reduction is observed, showing that no electron-transfer intermediates, such as reduced CuB, accumulate in this process. The rate constant for electron transfer from heme a to oxyferryl heme a3 was measured in beef cytochrome oxidase from pH 7.0 to pH 9.5, and found to decrease upon titration of a group with a pKa of 9.0. The rate constant is slower in D2O than in H2O by a factor of 4.3, indicating that the electron-transfer reaction is rate-limited by a proton-transfer step. The pH dependence and deuterium isotope effect for reduction of isolated compound F are comparable to that observed during reaction of the reduced, CO-inhibited CcO with oxygen by the flow-flash technique. This result indicates that electron transfer from heme a to oxyferryl heme a3 is not controlled by conformational effects imposed by the initial redox state of the enzyme. The rate constant for electron transfer from heme a to oxyferryl heme a3 is the same in the R. sphaeroides K362M CcO mutant as in wild-type CcO, indicating that the K-channel is not involved in proton uptake during reduction of compound F.  相似文献   

3.
Gram-positive thermophilic Bacillus species contain cytochrome caa3-type cytochrome c oxidase as their main terminal oxidase in the respiratory chain. To identify alternative oxidases, we isolated several mutants from B. stearothermophilus defective in the caa3-type oxidase activity [Sakamoto, J. et al (1996) FEMS Microbiol. Lett. 143, 151-158]. A novel oxidase was isolated from membrane preparations of one of the mutants, K17. The oxidase was composed of two subunits with molecular masses of 56 and 19 kDa, and contained protoheme IX, heme O, heme A, and Cu in a ratio of 1:0.7:0.2:3. CO difference spectra indicate that the high-spin heme is mainly heme O. These results suggest that the enzyme belongs to the heme-copper oxidase family and is a cytochrome b(o/a)3-type oxidase, whose high-spin heme is mainly heme O and partly heme A. The enzyme oxidized cytochrome c-551, which is a membrane-bound lipoprotein of thermophilic Bacillus. The turnover rate of the activity (Vmax = 190 s[-1]) and its affinity for cytochrome c-551 (Km = 0.15 microM) were much higher than those for yeast and equine heart cytochromes c. The oxidase activity was enhanced by the presence of salts and inhibited by sodium cyanide with a Ki value of 19 microM. The enzyme kinetics suggests that cytochrome c-551 is the natural substrate to this oxidase. Furthermore, the oxidase had similarity to cytochrome ba3-type oxidase from Thermus thermophilus in the subunit composition, partial amino acid sequence, and prosthetic groups, and therefore is suggested to belong to a unique subgroup of the heme-copper oxidase family together with the Thermus enzyme and archaeal oxidases such as Sulfolobus SoxABCD.  相似文献   

4.
Elucidating the structures of intermediates in the reduction of O2 to water by cytochrome c oxidase is crucial to understanding both oxygen activation and proton pumping by the enzyme. In the work here, the reaction of O2 with the mixed-valence enzyme, in which only heme a3 and CuB in the binuclear center are reduced, has been followed by time-resolved resonance Raman spectroscopy. The results show that O==O bond cleavage occurs within the first 200 micros after reaction initiation; the presence of a uniquely stable Fe---O---O(H) peroxy species is not detected. The product of this rapid reaction is a heme a3 oxoferryl (FeIV==O) species, which requires that an electron donor in addition to heme a3 and CuB must be involved. The available evidence suggests that the additional donor is an amino acid side chain. Recent crystallographic data [Yoshikawa, S., Shinzawa-Itoh, K., Nakashima, R., Yaono, R., Yamashita, E., Inoue, N., Yao, M., Fei, M. J., Libeu, C. P., Mizushima, T., et al. Science, in press; Ostermeier, C., Harrenga, A. , Ermler, U. & Michel, H. (1997) Proc. Natl. Acad. Sci. USA 94, 10547-10553] show that one of the CuB ligands, His240, is cross-linked to Tyr244 and that this cross-linked tyrosyl is ideally positioned to participate in dioxygen activation. We propose a mechanism for O---O bond cleavage that proceeds by concerted hydrogen atom transfer from the cross-linked His---Tyr species to produce the product oxoferryl species, CuB2+---OH-, and the tyrosyl radical. This mechanism provides molecular structures for two key intermediates that drive the proton pump in oxidase; moreover, it has clear analogies to the proposed O---O bond forming chemistry that occurs during O2 evolution in photosynthesis.  相似文献   

5.
The reactions of nitric oxide (NO) with fully oxidized cytochrome c oxidase (O) and the intermediates P and F have been investigated by optical spectroscopy, using both static and kinetic methods. The reaction of NO with O leads to a rapid (approximately 100 s-1) electron ejection from the binuclear center to cytochrome a and CuA. The reaction with the intermediates P and F leads to the depletion of these species in slower reactions, yielding the fully oxidized enzyme. The fastest optical change, however, takes place within the dead time of the stopped-flow apparatus (approximately 1 ms), and corresponds to the formation of the F intermediate (580 nm) upon reaction of NO with a species that we postulate is at the peroxide oxidation level. This species can be formulated as either Fe5+ = O CuB2+ or Fe4+ = O CuB3+, and it is spectrally distinct from the P intermediate (607 nm). All of these reactions have been rationalized through a mechanism in which NO reacts with CuB2+, generating the nitrosonium species CuB1+ NO+, which upon hydration yields nitrous acid and CuB1+. This is followed by redox equilibration of CuB with Fea/CuA or Fea3 (in which Fea and Fea3 are the iron centers of cytochromes a and a3, respectively). In agreement with this hypothesis, our results indicate that nitrite is rapidly formed within the binuclear center following the addition of NO to the three species tested (O, P, and F). This work suggests that nitrosylation at CuB2+ instead of at Fea32+ is a key event in the fast inhibition of cytochrome c oxidase by NO.  相似文献   

6.
The reaction of the quinol oxidase cytochrome bo3 from Escherichia coli with ubiquinol-2 (UQ2H2) was carried out using substoichiometric (0.5 equiv) amounts of substrate. Reactions were monitored through the use of freeze-quench EPR spectroscopy. Under 1 atm of argon, semiquinone was formed at the QB site of the enzyme with a formation rate constant of 140 s-1; the QB semiquinone EPR signal decayed with a rate constant of about 5 s-1. Heme b and CuB were reduced within the 10-ms dead time of the freeze-quench experiment and remained at a constant level of reduction over the 1-s time course of the experiment. Quantitation of the reduction levels of QB and heme b during this reaction yielded a reduction potential of 30-60 mV for heme b. Under a dioxygen atmosphere, the rates of semiquinone formation and its subsequent decay were not altered significantly. However, accurate quantitation of the EPR signals for heme b and heme o3 could not be made, due to interference from dioxygen. In the reaction between the QB-depleted enzyme and UQ2H2 under substoichiometric conditions, there was no observable change in the EPR spectra of the enzyme over the time course of the reaction, suggesting an electron transfer from heme b to the binuclear site in the absence of QB which occurs within the dead time of the freeze-quench apparatus. Analysis of the thermodynamics and kinetics of electron transfers in this enzyme suggests that a Q-cycle mechanism for proton translocation is more likely than a cytochrome c oxidase-type ion-pump mechanism.  相似文献   

7.
The cytochrome aa3 (600 nm) complex, or menaquinol oxidase, from Bacillus subtilis is a member of the cytochrome oxidase superfamily of respiratory membrane protein complexes. We have characterized some spectral properties of this enzyme and its reaction with cyanide. The magnetic circular dichroism (MCD) spectrum of the oxidized enzyme has a single band at 1560 nm in the near-infrared region assigned to bis-histidine-ligated, low-spin ferricytochrome a. The other heme, cytochrome a3, is presumably high-spin in the oxidized enzyme, as isolated. The absence of a trough in the MCD spectrum at 790 nm, observed previously with mammalian cytochrome c oxidase and assigned to CuA (Greenwood et al., Biochem. J. 215, 303-316, 1983), is consistent with the absence of this center from the menaquinol oxidase. When the heme ligand cyanide is added to oxidized menaquinol oxidase, a new MCD band appears at 2010 nm, while the band at 1560 nm is unperturbed. The new band is assigned to low-spin ferricytochrome a3 bound with cyanide. The long-wavelength position of this cyanide-induced band is proposed to arise from the close interaction of cytochrome a3 with the copper atom, CuB. The kinetics of cyanide binding to oxidized cytochrome aa3(600 nm) reveal a spectrally simple, yet kinetically complex process. The reaction is biphasic with second-order rate constants of 45 and 0.61 M-1s-1 at 1 mM KCN, with each phase constituting about 50% of the overall reaction. When the enzyme is subjected to a cycle of anaerobic reduction and air oxidation, the subsequent reaction with cyanide occurs in a single phase at the faster rate. This behavior is ascribed to different conformations of the binuclear center exhibiting different reactivities with cyanide, and is in keeping with that previously established for the structurally more complex mitochondrial cytochrome c oxidase. However, the electronic spectral characteristics of some of the species involved in these reactions are different in the present bacterial case from those of reported eukaryotic systems.  相似文献   

8.
Mutation of tyrosine-288 to a phenylalanine in cytochrome c oxidase from Rhodobacter sphaeroides drastically alters its properties. Tyr-288 lies in the CuB-cytochrome a3 binuclear catalytic site and forms a hydrogen bond with the hydroxy group on the farnesyl side chain of the heme. In addition, through a post-translational modification, Y288 is covalently linked to one of the histidine ligands that is coordinated to CuB. In the Y288F mutant enzyme, the "as-isolated" preparation is a mixture of reduced cytochrome a and oxidized cytochrome a3. The cytochrome a3 heme, which is largely six-coordinate low-spin in both oxidation states of the mutant, cannot be reduced by cytochrome c, but only by dithionite, possibly due to a large decrease in its reduction potential. It is postulated that the Y288F mutation prevents the post-translational modification from occurring. As a consequence, the catalytic site becomes disrupted. Thus, one role of the post-translational modification is to stabilize the functional catalytic site by maintaining the correct ligands on CuB, thereby preventing nonfunctional ligands from coordinating to the heme.  相似文献   

9.
Purified mitochondrial cytochrome c oxidase catalyzes the conversion of peroxynitrite to nitric oxide (NO). This reaction is cyanide-sensitive, indicating that the binuclear heme a3/CuB center is the catalytic site. NO production causes a reversible inhibition of turnover, characterized by formation of the cytochrome a3 nitrosyl complex. In addition, peroxynitrite causes irreversible inhibition of cytochrome oxidase, characterized by a decreased Vmax and a raised Km for oxygen. Under these conditions, the redox state of cytochrome a is elevated, indicating inhibition of electron transfer and/or oxygen reduction reactions subsequent to this center. The lipid bilayer is no barrier to these peroxynitrite effects, as NO production and irreversible enzyme inhibition were also observed in cytochrome oxidase proteoliposomes. Addition of 50 microM peroxynitrite to 10 microM fully oxidized enzyme induced spectral changes characteristic of the formation of ferryl cytochrome a3, partial reduction of cytochrome a, and irreversible damage to the CuA site. Higher concentrations of peroxynitrite (250 microM) cause heme degradation. In the fully reduced enzyme, peroxynitrite causes a red shift in the optical spectrum of both cytochromes a and a3, resulting in a symmetrical peak in the visible region. Therefore, peroxynitrite can both modify and degrade the metal centers of cytochrome oxidase.  相似文献   

10.
The cytochrome bo complex is a terminal ubiquinol oxidase in the aerobic respiratory chain of Escherichia coli and is encoded by the cyoABCDE operon. Recently, we have demonstrated that heme O at the high-spin heme-binding site is essential for redox-coupled proton pumping by the oxidase and suggested that the cyoE gene encodes a novel enzyme for heme O biosynthesis, protoheme IX farnesyltransferase (heme O synthase) (Saiki, K., Mogi, T., and Anraku, Y. (1992) Biochem. Biophys. Res. Commun. 189, 1491-1497). This study was focused to define the catalytic domain(s) of the CyoE protein via a site-directed mutagenesis approach. We have individually substituted 40 amino acid residues including 22 invariant residues with alanines and found that 23 mutant oxidases were nonfunctional and exhibited a specific loss of the CO binding activity at the site of the high-spin heme. Characterizations of the purified D65A, Y120A, and W172A mutant oxidases, which represent the mutations of different topological domains, revealed that their defects are attributable to substitution of protoheme IX for heme O present in the high-spin heme-binding site. Based on the above observations, we suggest that the conserved amino acid residues present in the cytoplasmic loops II/III and IV/V are part of the catalytic center of heme O synthase.  相似文献   

11.
Cytochrome bo is a four-subunit quinol oxidase in the aerobic respiratory chain of Escherichia coli and functions as a redox-coupled proton pump. Subunit I binds all the redox metal centers, low-spin heme b, high-spin heme o, and CuB, whose axial ligands have been identified to be six invariant histidines. This work explored the possible roles of the aromatic amino acid residues conserved in the putative transmembrane helices (or at the boundary of the membrane) of subunit I. Sixteen aromatic amino acid residues were individually substituted by Leu, except for Tyr61 and Trp282 by Phe and Phe415 by Trp. Leu substitutions of Trp280 and Tyr288 in helix VI, Trp331 in loop VII-VIII, and Phe348 in helix VIII reduced the catalytic activity, whereas all other mutations did not affect the in vivo activity. Spectroscopic analyses of the purified mutant enzymes revealed that the defects were attributable to perturbations of the binuclear center. On the basis of these findings and recent crystallographic studies on cytochrome c oxidases, we discuss the possible roles of the conserved aromatic amino acid residues in subunit I of the heme-copper terminal oxidases.  相似文献   

12.
In cytochrome c oxidase, a requirement for proton pumping is a tight coupling between electron and proton transfer, which could be accomplished if internal electron-transfer rates were controlled by uptake of protons. During reaction of the fully reduced enzyme with oxygen, concomitant with the "peroxy" to "oxoferryl" transition, internal transfer of the fourth electron from CuA to heme a has the same rate as proton uptake from the bulk solution (8,000 s-1). The question was therefore raised whether the proton uptake controls electron transfer or vice versa. To resolve this question, we have studied a site-specific mutant of the Rhodobacter sphaeroides enzyme in which methionine 263 (SU II), a CuA ligand, was replaced by leucine, which resulted in an increased redox potential of CuA. During reaction of the reduced mutant enzyme with O2, a proton was taken up at the same rate as in the wild-type enzyme (8,000 s-1), whereas electron transfer from CuA to heme a was impaired. Together with results from studies of the EQ(I-286) mutant enzyme, in which both proton uptake and electron transfer from CuA to heme a were blocked, the results from this study show that the CuA --> heme a electron transfer is controlled by the proton uptake and not vice versa. This mechanism prevents further electron transfer to heme a3-CuB before a proton is taken up, which assures a tight coupling of electron transfer to proton pumping.  相似文献   

13.
The reaction of nitric oxide (NO) with fast cytochrome bo from Escherichia coli has been studied by electronic absorption, MCD, and EPR spectroscopy. Titration of the enzyme with NO showed the formation of two distinct species, consistent with NO binding stoichiometries of 1:1 and 2:1 with observed dissociation constants at pH 7.5 of approximately 2.3 x 10(-)6 and 3.3 x 10(-)5 M. Monitoring the titration by EPR spectroscopy revealed that the broad EPR signals at g approximately 7.3, 3.7, and 2.8 due to magnetic interaction between high-spin heme o (S = 5/2) and CuBII (S = 1/2) are lost. A high-spin heme o signal at g = 6.0 appears as the 1:1 complex is formed but is lost again on formation of the 2:1 complex, which is EPR silent. The absorption spectrum shows that heme o remains in the high-spin FeIII state throughout the titration. These results are consistent with the binding of up to two NO molecules at CuBII. This has been confirmed by studies with the Cl- adduct of fast cytochrome bo. MCD evidence shows that heme o remains ligated by histidine and water. Addition of excess NO to the Cl- adduct leads to the appearance of a high-spin FeIII heme EPR signal. Hence chloride ion binds to CuB, blocking the binding of a second NO molecule. These results suggest a mechanism for the reduction of NO to nitrous oxide by cytochrome bo and cytochrome c oxidase in which the binding of two cis NO molecules at CuB permits the formation of an N-N bond and the abstraction of oxygen by the heme group.  相似文献   

14.
Diazene reacts rapidly with cytochrome c oxidase to reduce cytochrome a and CuA and to form a charge-transfer complex with ferric cytochrome a3; the diazene may serve to bridge the heme iron of this cytochrome and CuB. The complex is characterized by an intense, optically active absorbance located at 847 nm. A similar band had been observed previously upon reduction of cytochrome oxidase with hydrazine [Markossian, K. A., Paitian, N. A., and Nalbandyan, R. M. (1983) FEBS Lett. 156, 235-238], but it appears that this band is actually due to the diazene produced as a result of the oxidation of the hydrazine that occurs in this process. A similar diazene to iron charge-transfer band is found following the reaction of diazene with ferric horseradish peroxidase and with hemin chloride but not with met-myoglobin.  相似文献   

15.
Photodissociation of fully reduced, carbonmonoxy cytochrome bo3 causes ultrafast transfer of carbon monoxide (C triple bond O) from heme iron to CuB in the binuclear site. At low temperatures, the C triple bond O remains bound to CuB for extended times. Here, we show that the binding of C triple bond O to CuB perturbs the IR stretch of an un-ionized carboxylic acid residue, which is identified as Glu286 by mutation to Asp or to Cys. Before photodissociation, the carbonyl (C=O)-stretching frequency of this carboxylic acid residue is 1726 cm-1 for Glu286 and 1759 cm-1 for Glu286Asp. These frequencies are definitive evidence for un-ionized R-COOH and suggest that the carboxylic acids are hydrogen-bonded, though more extensively in Glu286. In Glu286Cys, this IR feature is lost altogether. We ascribe the frequency shifts in the C=O IR absorptions to the effects of binding photodissociated C triple bond O to CuB, which are relay ed to the 286 locus. Conversely, the 2065 cm-1 C triple bond O stretch of CuB-CO is markedly affected by both mutations. These effects are ascribed to changes in the Lewis acidity of CuB, or to displacement of a CuB histidine ligand by C triple bond O. C triple bond O binding to CuB also induces a downshift of an IR band which can be attributed to an aromatic C-H stretch, possibly of histidine imidazole, at about 3140 cm-1. The results suggest an easily polarizable, through-bond connectivity between one of the histidine CuB ligands and the carboxylic group of Glu286. A chain of bound water molecules may provide such a connection, which is of interest in the context of the proton pump mechanism of the heme-copper oxidases.  相似文献   

16.
The C-terminal periplasmic domain of subunit II of the Escherichia coli bo-type ubiquinol oxidase was replaced with the counterpart of the thermophilic Bacillus caa3-type cytochrome c oxidase containing the CuA-cytochrome c domain by means of gene engineering techniques. The chimeric terminal oxidase was expressed by a pBR322 derivative in a terminal oxidase deficient mutant of E. coli, although the amount of the chimeric enzyme was smaller than that of the Escherichia coli bo-type ubiquinol oxidase expressed by the original cytochrome bo-expressing plasmid. The chimeric enzyme showed much higher TMPD (N,N,N',N'-tetramethyl-p-phenylenediamine) oxidase activity than the wild-type cytochrome bo, but lower activity than the thermophilic Bacillus caa3-type cytochrome c oxidase. The chimeric subunit II was confirmed to bind to heme C. These results suggest that the CuA-cytochrome c domain grafted to this membrane anchor can facilitate electron transfer from reduced TMPD to low-spin protoheme b in subunit I.  相似文献   

17.
The reduction of dioxygen to water by cytochrome c oxidase was monitored in the Soret region following photolysis of the fully reduced CO complex. Time-resolved optical absorption difference spectra collected between 373 and 521 nm were measured at delay times from 50 ns to 50 ms and analyzed using singular value decomposition and multiexponential fitting. Five processes were resolved with apparent lifetimes of 0.9 micros, 8 micros, 36 micros, 103 micros, and 1.2 ms. A mechanism is proposed and spectra of intermediates are extracted and compared to model spectra of the postulated intermediates. The model builds on an earlier mechanism that used data only from the visible region (Sucheta et al. (1997) Biochemistry 36, 554-565) and provides a more complete mechanism that fits results from both spectral regions. Intermediate 3, the ferrous-oxy complex (compound A) decays into a 607 nm species, generally referred to as P, which is converted to a 580 nm ferryl form (Fo) on a significantly faster time scale. The equilibrium constant between P and Fo is 1. We propose that the structure of P is a3(4+)=O CuB2+-OH- with an oxidizing equivalent residing on tyrosine 244, located close to the binuclear center. Upon conversion of P to Fo, cytochrome a donates an electron to the tyrosine radical, forming tyrosinate. Subsequently a proton is taken up by tyrosinate, forming F(I) [a3(4+)=O CuB2+-OH- a3+ CuA+]. This is followed by rapid electron transfer from CuA to cytochrome a to produce F(II) [a3(4+)=O CuB2+-OH- a2+ CuA2+].  相似文献   

18.
The carbon monoxide compounds of the fully reduced and mixed valence forms of cytochrome bo from Escherichia coli were laser photolysed under anaerobic conditions at room temperature. The carbon monoxide recombined with characteristic rate constants of 50 s-1 or 35 s-1 in the fully reduced and mixed valence forms, respectively. Rates of CO recombination with the fully reduced enzyme were examined in a variety of mutant forms of cytochrome bo, produced by site-directed mutagenesis. A method was developed to deconvolute cytochromes bo and bd, leading to some reassessment of histidine ligands to the metals. Significant changes in the rate constant of recombination of carbon monoxide occurred in many of these mutants and these results could be rationalised generally in terms of our current working model of the folding structure of subunit I. In the mixed valence form of the enzyme the transient photolysis spectra in the visible region are consistent with a rapid electron redistribution from the binuclear centre to the low-spin haem. This electron transfer is biphasic, with rate constants of around 10(5) and 8000 s-1. The process was also examined in the His-333-Leu mutant, in which a putative histidine ligand to CuB is replaced by leucine, and which results in the loss of the CuB. It appeared that rapid haem-haem electron transfer could still occur. The observation that CuB is apparently not required for rapid haem-haem electron transfer is consistent with the recently proposed model in which the two haems are positioned on opposite sides of transmembrane helix X in subunit I of the oxidase.  相似文献   

19.
The vectorial nature of redox Bohr effects (redox-linked pK shifts) in cytochrome c oxidase from bovine heart incorporated in liposomes has been analyzed. The Bohr effects linked to oxido-reduction of heme a and CuB display membrane vectorial asymmetry. This provides evidence for involvement of redox Bohr effects in the proton pump of the oxidase.  相似文献   

20.
The enzymatic properties and the three-dimensional structure of spinach glycolate oxidase which has the active-site Tyr129 replaced by Phe (Y129F glycolate oxidase) has been studied. The structure of the mutant is unperturbed which facilitates interpretation of the biochemical data. Y129F glycolate oxidase has an absorbance spectrum with maxima at 364 and 450 nm (epsilon max = 11400 M-1 cm-1). The spectrum indicates that the flavin is in its normal protonated form, i.e. the Y129F mutant does not lower the pKa of the N(3) of oxidized flavin as does the wild-type enzyme [Macheroux, P., Massey, V., Thiele, D. J., and Volokita, M. (1991) Biochemistry 30, 4612-4619]. This was confirmed by a pH titration of Y129F glycolate oxidase which showed that the pKa is above pH 9. In contrast to wild-type glycolate oxidase, oxalate does not perturb the absorbance spectrum of Y129F glycolate oxidase. Moreover oxalate does not inhibit the enzymatic activity of the mutant enzyme. Typical features of wild-type glycolate oxidase that are related to a positively charged lysine side chain near the flavin N(1)-C(2 = O), such as stabilization of the anionic flavin semiquinone and formation of tight N(5)-sulfite adducts, are all conserved in the Y129F mutant protein. Y129F glycolate oxidase exhibited about 3.5% of the wild-type activity. The lower turnover number for the mutant of 0.74 s-1 versus 20 s-1 for the wild-type enzyme amounts to an increase of the energy of the transition state of about 7.8 kJ/mol. Steady-state analysis gave Km values of 1.5 mM and 7 microM for glycolate and oxygen, respectively. The Km for glycolate is slightly higher than that found for wild-type glycolate oxidase (1 mM) whereas the Km for oxygen is much lower. As was the case for wild-type glycolate oxidase, reduction was found to be the rate-limiting step in catalysis, with a rate of 0.63 s-1. The kinetic properties of Y129F glycolate oxidase provide evidence that the main function of the hydroxyl group of Tyr129 is the stabilization of the transition state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号