首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Current source generators (dipoles) of the human visual evoked potentials to pattern-onset stimuli were investigated with the dipole tracing method, using a realistic four-layer head model of scalp-skull-fluid-brain, which can equate the surface potential distributions on a scalp to one or two corresponding equivalent dipoles. Three healthy adult human subjects were used, and 29 electrodes were set on a scalp of each subject. Visual stimulus of a checkerboard pattern was presented for 250 ms in each of eight different visual fields (central and peripheral parts of each of four quadrant fields). The visual evoked potentials consisting of initial positive-late negative waves (CI and CII components designated by Jeffreys and Axford) were recorded mainly on the occipital region contralateral to stimulated visual fields. The initial positive wave (CI) of visual evoked potentials were divided into two components: early component of the CI (e-CI--an early small positive deflection with approximate peak latency of 70-90 ms) and late component of the CI (l-CI--a late large positive deflection with approximate peak latency of 100-120 ms). The dipole with a fit exceeding 98% dipolarity with our model at the shortest latencies was defined as an "earliest dipole" of the evoked potentials, produced by the primary responses in the occipital cortex to an afferent volley from the lateral geniculate body. These earliest dipoles, for eight different visual field stimulations, were estimated at the approximate peak of the e-CI. Estimated dipoles were superimposed on a three-dimensional magnetic resonance image of each subject's brain. Earliest dipoles for right upper and right lower quadrant-field stimulations were located at the left calcarine cortices below and above the calcarine fissure, respectively; earliest dipoles for left upper and left lower quadrant-field stimulations were located at the right calcarine cortices below and above the calcarine fissure, respectively. Furthermore, earliest dipoles for central and peripheral quadrant-field stimulations were located posteriorly and anteriorly in the calcarine cortex, respectively. The results from these non-invasive analyses of visual evoked potentials indicated topographic localization of the dipoles around the calcarine fissure based on the loci of the visual fields. This was comparable to the retinotopy of the human occipital lobe based on clinicopathological studies.  相似文献   

2.
Using H2(15)O 3D Positron Emission Tomography (PET), regional cerebral blood flow (rCBF) was measured in six human subjects under two different conditions: at rest and while performing self-paced horizontal saccadic eye movements in darkness. These two conditions were repeated four times each. First, the comparison between the four saccadic and four resting conditions was investigated in a group and a single subject analysis. Saccades elicited bilateral rCBF increases in the medial part of the superior frontal gyrus (supplementary eye field), precentral gyrus (frontal eye field), superior parietal lobule, anterior medial part of the occipital lobe involving striate and extrastriate cortex (lingual gyrus and cuneus), and in the right inferior parietal lobule. At the subcortical level, activations were found in the left putamen. These results mainly replicate previous PET findings on saccadic control. Second, the interaction between the experimental conditions and their repetition was examined. When activations throughout repetition of the same saccadic task are compared, the supplementary eye fields show a progressive increase of activation. On the contrary, the activation in the cerebellum, left superior parietal lobule and left occipital cortex progressively decreases during the scanning session. Given the existence of such an interaction, the pattern of activations must be interpreted as a function of task repetition. This may be a factor explaining some apparent mismatch between different studies.  相似文献   

3.
Studies of the human visual cortex have demonstrated that an area for motion processing (V5) is located in the lateral occipito-temporal cortex. To study the timing of arrival of signals in V5 we recorded multi-channel visual evoked potentials (VEPs) to checkerboard stimuli. We then applied dipole source analysis which was computed on a grand average of 10 subjects, and on five individual subjects, respectively. We demonstrate an early VEP component with onset before 30 ms and with a peak around 45 ms, located in the vicinity of V5. This early component was independent of a second activity, which started around 50 ms and peaked around 70 ms, and was located within the striate cortex (V1). These results provide further evidence for a very fast input to V5 before activation of V1.  相似文献   

4.
PURPOSE: Ictal single photon emission computed tomography (SPECT) has been evaluated as an adjunctive localizing technique in temporal lobe epilepsies and, to a lesser degree, in some extratemporal epilepsies. The purpose of this study was to determine whether occipital lobe seizures are associated with distinctive ictal cerebral blood perfusion (rCP) patterns. METHODS: SPECT was used with the tracer 99mTc HMPAO to image ictal rCP in 6 patients in whom clinical, EEG, and imaging data indicated occipital lobe seizures. RESULTS: Two patterns of rCP were seen. Four patients had hyperperfusion that was restricted to the occipital lobe, and two patients had hyperperfusion of the occipital lobe and the ipsilateral mesial temporal lobe, with hypoperfusion of the lateral temporal lobe. The latter 2 patients had clinical and surface EEG evidence of temporal lobe involvement in the seizure discharge. CONCLUSIONS: Ictal rCP patterns in occipital lobe seizures are distinct from those in temporal lobe seizures and may vary according to whether or not ipsilateral temporal lobe structures are involved in the ictal discharge.  相似文献   

5.
Previous studies report that background luminance flicker, which is asynchronous with signal averaging, reduces the amplitude and increases the latency of the pattern-onset visual evoked potential (VEP). This effect has been attributed to saturation of the magnocellular (m-) pathway by the flicker stimulus. In the current study, we evaluate this hypothesis and further characterize this effect. We found that flicker had similar effects on the pattern-onset and pattern-reversal VEP, suggesting that the reversal and onset responses have similar generators. Chromatic flicker decreased latency of the chromatic VEP whereas luminance flicker increased peak latency to luminance targets. This result indicates that luminance flicker saturates a rapidly conducting m-pathway whereas chromatic flicker saturates a more slowly conducting parvocellular (p-) pathway. Finally, evoked potentials to chromatic and luminance stimuli were recorded from 34 electrodes over the scalp in the presence of static and asynchronously modulated backgrounds. An equivalent dipole model was used to assess occipital, parietal, and temporal lobe components of the surface response topography. Results showed that chromatic flicker reduced activity to a greater extent in the ventral visual pathway whereas luminance flicker reduced activity to a greater extent in the dorsal visual pathway to parietal lobe. We conclude that the VEP to isoluminant color and luminance stimuli contains both m- and p-pathway components. Asynchronous flicker can be used to selectively reduce the contribution of these pathways to the surface recorded VEP. Our results provide evidence of parallel pathways in the human visual system, with a dorsal luminance channel projecting predominantly to the posterior parietal lobe and a ventral color channel projecting predominantly to inferior temporal lobe.  相似文献   

6.
INTRODUCTION: Digital treatment of electrical signals coming from the central nervous system on stimulation of the optic nerve path offers an objective method for evaluation of visual evoked potentials (VEP) shown graphically on a cerebral map. OBJECTIVE: To evaluate the topographical distribution of VEP in cases of optic neuropathy adding this parameter to the usual parameters of latency and amplitude. MATERIAL AND METHODS: We studied 35 patients with suspected optic neuropathy and normal findings on basic ophthalmological examination, in whom VEP and VEP mapping (VEPM) was done. RESULTS: In 26% of the cases there was no response for evaluation with the usual VEP recording techniques, whilst in those with VEPM this percentage was reduced to 11.5%. In the other cases there was a potential with characteristic distribution in the occipital areas and a maximally positive dipole posteriorly. CONCLUSION: VEPM is an objective method for evaluation of the visual pathway offering better discrimination than the usual VEP in more severe cases of neuropathy.  相似文献   

7.
Voluntary movements can be classified into the two categories depending on how those are initiated; ones initiated internally, and others triggered or paced by external stimuli. Central neuronal mechanisms involved in those preparation and execution could be represented by movement-related cortical potentials (MRCP) or Bereitschaftspotential (BP), and contingent negative variation (CNV), respectively. The both potentials, as the field potentials, can be recorded with long time constant, and represent transient changes of the membrane potentials of the cortical neurons. In patients with the lesion at the cerebellar efferent system, the BP disappeared completely whereas the late CNV was normally seen. In patients with parkinsonism, in contrast, the late CNV was significantly smaller in amplitude in severe than in mild symptom group. Recent subdural recording in epilepsy patients demonstrated that the BP and late CNV were commonly generated from the primary and supplementary motor areas, and that late CNV also arose from the frontal association cortices (mesial, basal and lateral prefrontal areas). It is therefore suggested that subcortical generating mechanism is different for the late CNV and BP although both commonly share at least some cortical generators, and that the basal ganglia are most likely responsible for the generation of the late CNV and the cerebellar efferent system for the generation of the BP.  相似文献   

8.
Cortical visual impairment (CVI) following bacterial meningitis is a very uncommon complication. Two children with CVI following bacterial meningitis are reported. Bacterial agents were Haemophilus influenzae type B in one and meningococci in the other child. Both children showed only insufficient recovery from CVI, mental retardation and residual neurological symptoms. Flash visual evoked potentials (VEP) showed preserved cortical response at onset of CVI. Re-evaluations several months later showed significantly reduced amplitudes, but normal latencies for P100. Thus, flash VEP does not allow prediction of visual outcome. MRI results have not been reported before. MRI at onset of diagnosis showed occipital parenchymal irregularities with enlarged sulci and subarachnoid spaces. Follow up MRI 15 months after onset of CVI in one patient showed marked atrophy of the occipital cortex, hyperintensities of the cortical white matter and no visible optic radiation. The MRI findings indicate hypoxic-ischaemic lesions in the border zone between the distribution of the great cerebral arteries.  相似文献   

9.
We report a patient with bilateral independent temporal lobe seizures in whom two [99mTc]HMPAO single photon emission computed tomograph (SPECT) scans were performed during two different seizures. In the first periictal SPECT, [99mTc]HMPAO was injected in the interval between two closely spaced seizures (one localized in the left temporal lobe and the other in the right temporal lobe). SPECT images showed hypoperfusion in the left lateral temporal lobe, hyperperfusion of the left mesial temporal region, and pronounced hyperperfusion in the right anterior temporal lobe. These results suggest both a postictal left temporal SPECT pattern and an ictal right temporal pattern. In the second periictal SPECT, [99mTc]HMPAO was injected immediately after a right temporal lobe seizure and showed right lateral temporal lobe hypoperfusion and right mesial hyperperfusion, suggesting a postictal right temporal SPECT pattern. Interpretation of the periictal SPECT should take into account EEG changes at the time or in the minutes immediately after injection of [99mTc]HMPAO.  相似文献   

10.
PURPOSE: To explore the abnormal crossing of the retinogeniculate pathways in human albinos with visual-evoked potentials (VEPs). METHODS: The authors studied the symmetry of the topographic distribution of pattern onset/offset VEPs over the posterior part of the scalp elicited by monocular stimulation of each eye in 31 consecutive patients with different types of albinism. RESULTS: Twenty-one patients had asymmetric responses, with the major amplitude recorded over the lateral part of the scalp contralaterally to the stimulated eye in 14 patients and ipsilaterally in 7 patients. In two patients, the responses had a symmetric topographic distribution. In eight patients, the amplitude was so low that studying the symmetry was not possible. CONCLUSIONS: These findings demonstrate a non-uniform pattern of asymmetry as a result of the miswiring of the visual pathways in human albinism. Moreover, the low amplitude of the VEP recorded in a consecutive series of patients shows the difficulty of the study of this phenomenon in a clinical setting.  相似文献   

11.
Oxidative stress may contribute to neuronal loss in Alzheimer's disease (AD). The present study compares the levels of oxidative damage to proteins, lipids, and DNA bases from seven different brain areas of AD and matched control tissues by using a range of techniques. No differences in levels of lipid peroxidation were found in any of the brain regions by using two different assay systems. Overall, there was a trend for protein carbonyl levels to be increased in AD in frontal, occipital, parietal, and temporal lobe, middle temporal gyrus, and hippocampus, but a significant difference was found only in the parietal lobe. Gas chromatography-mass spectrometry was used to measure products of damage to all four DNA bases. Increased levels of some (8-hydroxyadenine, 8-hydroxyguanine, thymine glycol, Fapy-guanine, 5-hydroxyuracil, and Fapy-adenine), but not all, oxidized DNA bases were observed in parietal, temporal, occipital, and frontal lobe, superior temporal gyrus, and hippocampus. The baseline level of oxidative DNA damage in the temporal lobe was higher than in other brain regions in both control and AD brain. The finding of increased oxidative damage to protein and DNA strengthens the possibility that oxidative damage may play a role in the pathogenesis of AD in at least some key brain regions.  相似文献   

12.
Fast repetitive finger movements are associated with characteristic EEG patterns described in humans as steady-state movement-related cortical potentials (ssMRCPs). The objective of the present study was to determine the electrical generators of ssMRCPs (movement rate, 2 Hz) by dipole modelling. The generators for the initial ssMRCP phase (peak approximately 60 msec before EMG onset) were located in the central region bilaterally, with largely radial orientation, consistent with activation of the crown of the precentral gyrus. The generator of the next phase (peak approximately 10 msec after EMG onset) was located in the contralateral central region with tangential posterior orientation, consistent with activation of the anterior wall of the central sulcus. The postmovement phase (peak approximately 95 msec after EMG onset) was explained by another source in the contralateral central region with tangential anterior orientation, consistent with activation of the posterior wall of the central sulcus. This pattern probably corresponds to a sequence of activation of the bilateral dorsal premotor cortex, contralateral primary motor, and primary somatosensory cortex that takes place within approximately 200 msec around EMG onset. Steady-state movement-related cortical potentials in combination with dipole modelling provide a novel, noninvasive approach to assessing changes of human cortical premotor, motor, and somatosensory activation in the millisecond range.  相似文献   

13.
Slow covariations in neuronal resting potentials can lead to artefactually fast cross-correlations in their spike trains. J. Neurophysiol. 80: 3345-3351, 1998. A model of two lateral geniculate nucleus (LGN) cells, which interact only through slow (tens of seconds) covariations in their resting membrane potentials, is used here to investigate the effect of such covariations on cross-correlograms taken during stimulus-driven conditions. Despite the slow timescale of the interactions, the model generates cross-correlograms with peak widths in the range of 25-200 ms. These bear a striking resemblance to those reported in studies of LGN cells by Sillito et al., which were taken at the time as evidence of a fast spike timing synchronization interaction; the model highlights the possibility that those correlogram peaks may have been caused by a mechanism other than spike synchronization. Slow resting potential covariations are suggested instead as the dominant generating mechanism. How can a slow interaction generate covariogram peaks with a width 100-1,000 times thinner than its timescale? Broad peaks caused by slow interactions are modulated by the cells' poststimulus time histograms (PSTHs). When the PSTHs have thin peaks (e.g., tens of milliseconds), the cross-correlogram peaks generated by slow interactions will also be thin; such peaks are easily misinterpretable as being caused by fast interactions. Although this point is explored here in the context of LGN recordings, it is a general point and applies elsewhere. When cross-correlogram peak widths are of the same order of magnitude as PSTH peak widths, experiments designed to reveal short-timescale interactions must be interpreted with the issue of possible contributions from slower interactions in mind.  相似文献   

14.
PURPOSE: To study benzodiazepine receptor (BZR) density and functional deficits in occipital lobe epilepsy. METHODS: A 39-year-old man who had simple partial visual seizures after neurosurgical transtentorial extirpation of a pinealoma was studied by EEG, magnetic resonance imaging (MRI), and positron emission tomography (PET) of [18F]2-fluoro-2-deoxy-D-glucose (FDG) at rest and during visual activation task and[11C]flumazenil (FMZ). RESULTS: Electroencephalographic recordings were nonspecific, and MRI did not reveal any morphologic anomaly in the occipital lobe. Flumazenil-PET demonstrated a small epileptogenic region in the right visual association cortex and FDG-PET showed hypometabolism in a corresponding location and thalamic diaschisis. Stimulation of occipital metabolism by a continuous visual recognition task improved significantly the contrast between the dysfunctional zone and its surround. CONCLUSIONS: As BZR deficits are restricted to a small region, widespread hypometabolism in networks involved in visual information processing indicates an extensive functional deactivation by the epileptogenic focus.  相似文献   

15.
Event-related potentials (ERPs) were recorded from healthy subjects in response to unilaterally flashed high and low luminance bar stimuli presented randomly to left and right field locations. Their task was to covertly and selectively attend to either the left or right stimulus locations (separate blocks) in order to detect infrequent shorter target bars of either luminance. Independent of attention, higher stimulus luminance resulted in higher ERP amplitudes for the posterior N95 (80-110 ms), occipital P1 (110-140 ms), and parietal N1 (130-180 ms). Brighter stimuli also resulted in shorter peak latency for the occipital N1 component (135-220 ms); this effect was not observed for the N1 components over parietal, central or frontal regions. Significant attention-related amplitude modulations were obtained for the occipital P1, occipital, parietal and central N1, the occipital and parietal P2, and the parietal N2 components; these components were larger to stimuli at the attended location. In contrast to the relatively short latencies of both spatial attention and luminance effects, the first interaction between luminance and spatial attention effects was observed for the P3 component to the target stimuli (350-750 ms). This suggests that interactions of spatial attention and stimulus luminance previously reported for reaction time measures may not reflect the earliest stages of sensory/perceptual processing. Differences in the way in which luminance and attention affected the occipital P1, occipital N1 and parietal N1 components suggest dissociations among these ERPs in the mechanisms of visual and attentional processing they reflect.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Visual evoked potentials (VEPs) were recorded from 8 different points (from points A and B near the bregma to points G and H near the occipital bone) of the dura under parietal bone in rats. The study was performed with 68 adult male Slc: Wistar/ST rats weighing 259.9-298.0g. VEPs recorded from the dura had a large negative component with a peak around 45 msec (N1), a large positive component with a peak around 75 msec and a large negative component with a peak around 120 msec (N2). Points A and B were not suitable for recording of the VEPs because some rats showed no N2 peak. The amplitude of peaks N1 to P at point E, upper the left optic layer of the superior colliculus, was higher than those from other points. Point E was the best position for recording of the VEP from dura in Slc: Wistar/ST rats.  相似文献   

17.
This study characterized patterns of brain electrical activity associated with selective attention to the color of a stimulus. Multichannel recordings of event-related potentials (ERPs) were obtained while subjects viewed randomized sequences of checkerboards consisting of isoluminant red or blue checks superimposed on a grey background. Stimuli were presented foveally at a rapid rate, and subjects were required to attend to the red or blue checks in separate blocks of trials and to press a button each time they detected a dimmer target stimulus of the attended color. An early negative ERP component with an onset latency of 50 ms was sensitive to stimulus color but was unaffected by the attentional manipulation. ERPs elicited by attended and unattended stimuli began to diverge after approximately 100 ms following stimulus onset. Inverse dipole modelling of the attended-minus-unattended difference waveform indicated that an initial positive deflection with an onset latency of 100 ms had a source in lateral occipital cortex, while a subsequent negative deflection with an onset at 160 ms had a source in inferior occipito-temporal cortex. Longer-latency attention-sensitive components were localized to premotor frontal areas (onset at 190 ms) and to more anterior regions of the fusiform gyrus (onset at 240 ms). These source localizations correspond closely with cortical areas that were identified in previous neuroimaging studies as being involved in color-selective processing. The present ERP data thus provide information about the time course of stimulus selection processes in cortical areas that subserve attention to color.  相似文献   

18.
One of the basic properties of the auditory system is the ability to analyse complex temporal patterns. Here, we investigated the neural activity associated with auditory pattern processing using event-related brain potentials. Participants were presented with a continuously repeating sequence of four tones with rare changes in either the frequency or timing of one of the tones. Both frequency- and time-deviant sounds generated mismatch negativity (MMN) waves that peaked at midline central electrode sites and inverted in polarity at inferior temporal and occipital sites, consistent with generators in the supratemporal plane. The MMN scalp topography was similar for the frequency- and time-deviant stimuli, suggesting that both spectral and temporal relations among elements of an auditory pattern are encoded in a unified memory trace.  相似文献   

19.
Evoked potentials to brief 1,000-Hz tones presented to either the left or the right ear were recorded from 30 electrodes arrayed over the head. These recordings were submitted to two different forms of source analysis: brain electric source analysis (BESA) and variable-resolution electromagnetic tomography (VARETA). Both analyses showed that the dominant intracerebral sources for the late auditory-evoked potentials (50-300 ms) were in the supratemporal plane and lateral temporal lobe contralateral to the ear of stimulation. The analyses also suggested the possibility of additional sources in the frontal lobes.  相似文献   

20.
Event-related potentials (ERPs) were recorded to trains of rapidly presented auditory and visual stimuli. ERPs in conditions in which subjects attended to different features of visual stimuli were compared with ERPs to the same type of stimuli when subjects attended to different features of auditory stimuli. This design permitted us to study effects of variations in both intramodal and intermodal visual attention on the timing and topography of ERP components in the same experiment. There were no indications that exogenous N110, P140 and N180 components to line gratings of high and low spatial frequencies were modulated by either intra- or intermodal forms of attention. Furthermore, intramodal and intermodal attention effects on ERPs showed similar topographical distributions. These combined findings suggest that the same neural generators in extrastriate occipital areas are involved in both forms of attention. Visual ERPs elicited in the condition in which subjects were engaged in auditory selective attention showed a large positive displacement at the occipital scalp sites relative to ERPs to attended and unattended stimuli in the visual condition. The early onset of this positivity might be associated with a highly confident and early rejection of the irrelevant visual stimuli, when these stimuli are presented among auditory stimuli. In addition, the later onset of selection potentials in the intramodal condition suggests that a more precise stimulus selection is needed when features of visual stimuli are rejected among other features of the same stimulus pattern, than when visual stimuli are rejected among stimuli of another modality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号