首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 281 毫秒
1.
以聚偏氟乙烯(PVDF)、氯磺酸和氢氧化锂等为原料制备了聚偏氟乙烯磺酸锂(SPVDFLi),将SPVDFLi与PVDF复合制得单离子聚合物电解质(SIPE).为进一步提高SIPE的电导率,向其添加双三氟甲烷磺酰亚胺锂(LiTFSI)制备双盐型聚合物复合电解质(SPVDFLi/LiTFSI-y),通过调控LiTFSI与聚合物的比例探究了双盐型聚合物电解质的电化学性能.结果表明:LiTFSI的添加有效提高了聚合物复合电解质的电导率.含40%LiTFSI的SPVDFLi/LiTFSI-40聚合物复合电解质室温电导率可达到1.41×10-4 S/cm,锂离子迁移数为0.68,稳定电压可以达到4.84 V.组装的LiFePO4/SPE/Li电池,0.2 C倍率下循环50圈后容量保持率为99.1%.该聚合物复合电解质有望用于制备高性能锂离子电池.  相似文献   

2.
目前大规模商业化的锂二次电池普遍采用有机碳酸酯类的液态电解质,易泄露、易燃烧、易爆炸等安全问题限制了该类电解质的进一步应用。全固态聚合物电解质(all-solid-state polymer electrolytes,ASPEs)电池具有安全性能好、能量密度高、工作温度区间广、循环寿命长等优点,是锂离子电池领域的研究热点之一。ASPEs通常还具有优异的力学性能,可以很好地抑制锂金属电极在充放电过程中的枝晶生长,所以在锂金属电池领域也具有十分重要的应用前景。作者综述了研究较多的几种ASPEs体系,包括聚氧化乙烯(PEO)基体系、聚碳酸酯基体系、聚硅氧烷基体系、聚合物锂单离子导体体系。PEO基ASPEs是研究最早且研究最多的一类ASPEs材料,但其高结晶性造成室温Li+迁移困难、离子电导率低等问题,所以研究人员研发了一系列降低PEO结晶度、提升体系离子电导率的改性手段。聚碳酸酯基ASPEs主链结构中含有强极性碳酸酯基团而且室温无定形态,使得锂盐更容易解离,且室温离子电导率一般较PEO基要高,是比较有潜力的PEO基ASPEs替代材料。除了碳链聚合物,玻璃化转变温度较低的聚硅氧烷基ASPEs体系也因为其较高的离子电导率受到研究人员关注。在锂电池充放电过程中,Li+才是有效载荷子,电解质中阴离子的迁移会增加电解质体系的浓差极化,所以阴离子不发生迁移、Li+迁移数接近于1的聚合物锂单离子导体也是一类具有研究价值的ASPEs材料。最后,本综述讨论了全固态聚合物电解质的应用前景及未来发展方向,指出了PEO基体系的研究重点在于发展有机-无机复合体系、聚碳酸酯基体系的研究重点在于发展与其它聚合物的共混体系、聚硅氧烷基体系的研究重点在于增强体系力学性能、聚合物锂单离子导体体系的研究重点在于设计离子电导率更高的新型聚阴离子锂盐。  相似文献   

3.
聚氧化乙烯(PEO)基固态电解质由于高的柔韧性、优异的加工性以及良好的界面兼容性等在全固态锂电池中极具应用前景,但其较低的室温离子电导率和较窄的电化学窗口限制了其高效应用。本工作采用溶液浇铸法将含有极性官能团的冠醚(15-C-5)分子分散在PEO/双三氟甲基磺酰亚胺锂(LiTFSI)基质中制备PEO/15-C-5聚合物固态电解质。重点探究冠醚含量对固态电解质中Li+传递的影响,同时对聚合固态电解质的形貌、力学性能、电化学性能进行系统研究。结果表明:10%15-C-5在PEO中分散性较好,可有效降低PEO的结晶度,进而提升PEO链段运动性,使其抗拉强度达1.83 MPa。15-C-5与锂离子间强的络合作用促进锂盐解离,同时对阴离子产生静电排斥,从而增强离子电导率并提高锂离子迁移数,30℃下离子电导率达到1.00×10^(-5)S/cm,60℃下锂离子迁移数达到0.42,分别是PEO电解质的4.5和1.9倍。另外冠醚与阴离子形成的静电排斥中心易捕获锂离子形成较为稳定的悬停位点,降低了PEO链段形成的O-Li络合活性位点促进C-O-C结构分解的可能性,从而提高PEO电解质的分解电压(从4.29 V到5.42 V)。与镍钴锰三元正极匹配的全固态锂电池展现出稳定的长循环性能,其在60℃、0.5 C的条件下初始放电比容量达到159 mAh/g,经100圈循环之后容量保持率达到89%。与磷酸铁锂正极匹配组装的全固态锂电池同样表现出优异的性能。  相似文献   

4.
将具有较高电导率和稳定性的硫化物电解质LPOS引入PEO基聚合物中,制备一种新型PEO/LPOS复合聚合物电解质。研究结果表明,1%LPOS的添加能显著改善PEO基聚合物电解质的电导率、锂离子迁移数和电化学稳定性。与纯PEO基电解质相比,新制备的复合聚合物电解质PEO18-LiTFSI-1%LPOS室温电导率由   6.18×106 S/cm提高至1.60×105 S/cm,提高了158%。80 ℃表现出最佳电导率为1.08×103 S/cm,电化学窗口提高至4.7 V,同时具有非常良好的对锂稳定性。以新型复合电解质组装的LiFePO4/Li全固态锂电池表现出良好的循环稳定性,在60 ℃ 1 C下循环50周后放电比容量仍维持在105 mA•h/g以上。  相似文献   

5.
在聚环氧乙烷(PEO)基固体聚合物电解质中加入无机填料,是一种低成本、有效改善其力学和电化学性能的方法。为了更有效地改善PEO基固态电解质的电化学性能,本工作采用流延法制备了纳米沸石咪唑骨架材料(ZIF-8)与聚氧化乙烯(PEO)复合的固态电解质。通过扫描电子显微镜(SEM)、X射线衍射(XRD)等物理表征和电化学阻抗谱(EIS)、伏安线性扫描(LSV)、充放电循环等电化学测试手段,证明了加入20%ZIF-8纳米粒子的PEO基复合固态电解质CPE20具有最小的体电阻、较宽的电化学稳定窗口与最低的活化能(8.4×10^(-3)eV);20℃时,其电导率达到了4.9×10^(-5)S/cm(比纯PEO高一个数量级);70℃时,其电导率为1.08×10^(-3)S/cm(与液态电解液相当);CPE20的锂离子迁移数提高至0.46,而纯PEO基固态电解质为0.36;采用CPE20制备的LiFePO_(4)||Li电池在室温下具有良好的容量和循环性能,而且容量保持率超过96%。加入适量的惰性填料ZIF-8时,可以有效降低聚合物的结晶度,增加聚合物的非晶区,促进锂盐的溶解,提高锂离子的迁移率,使复合固态电解质具有更加优异的电化学性能。因此添加ZIF-8的PEO基固相聚合物在固态金属锂电池中具有广阔的应用前景。  相似文献   

6.
通过固态电解质构建的全固态锂离子电池具有极高的安全性及可靠性,是目前锂离子电池领域的研究热点。其中复合固态电解质既改善了聚合物电解质力学性能差、离子电导率低等缺点又解决了无机固态电解质的界面接触等问题。本文通过溶胶-凝胶法制备了掺杂了Al、Mo的Li_(7)La_(3)Zr_(2)O_(12)粉体,并将其与PEO(聚环氧乙烷)复合,利用溶液浇筑法制备了不同比例的复合固态电解质,考察其在全固态电池中的性能。通过X射线衍射(XRD)、扫描电子显微镜(SEM)、差示扫描量热仪(DSC)等测试手段对Li_(6.65)Al_(0.05)La_(3)Zr_(1.9)Mo_(0.1)O_(12)粉体以及复合固态电解质进行了材料表征。同时利用电化学工作站、电池充放电测试系统测试了复合固态电解质在全固态电池中的应用性能。与纯PEO电解质相比,复合15%Li_(6.65)Al_(0.05)La_(3)Zr_(1.9)Mo_(0.1)O_(12)的电解质电化学窗口为4.79V,可以在0.2mA/cm^(2)下稳定循环500h,在0.1C倍率下,循环100圈容量保持率为89.9%。  相似文献   

7.
以聚环氧乙烷(PEO)为黏结剂,离子导电性的Li1.5Al0.5Ge1.5(PO4)3(LAGP)为主相,乙腈为溶剂,按照EO/Li,摩尔比为13,变化LiN(CF3SO2)2(LiTFSI)中Li+ 与LAGP中Li+ 的比例,通过溶液浇注法制备得到LAGP-PEO(LiTFSI)固体复合电解质。用X射线衍射、扫描电镜(SEM)和电化学阻抗(EIS)等方法对固体复合电解质的形貌、结构和电导率进行表征。结果表明,LAGP可与PEO(LiTFSI)部分络合并均匀分散于PEO(LITFSI)内,整个体系内存有三个主体相,即PEO(LiTFSI)的复合相、LAGP晶相以及PEO与两种锂盐的过渡相。通过阻抗谱图发现,当质量比w(LAGP)∶w(PEO)=6∶4时,LAGP-PEO(LiTFSI) 固体复合电解质具有最高的室温电导率,为2.68×10-5 S/cm,在333 K时,达到1.86×10-4 S/cm,接近LAGP的电导率水平。这说明固体复合电解质中加入LAGP即降低了PEO的结晶度,LAGP自身的电导率也有一定贡献。  相似文献   

8.
在复合电解质的设计中,采用结构承载相和离子导电相相结合的方式来满足结构化锂离子电池对强度和电性能的综合要求。首先确定环氧树脂为结构承载相的基体以获得良好的力学性能,利用液态和固态两种不同的造孔剂在基体内构筑连通孔隙,再通过在连通孔隙中填充凝胶态电解质或吸附液态电解质的方式提高离子导通率。综合考虑结构承载相力学性能和吸液率,得出以下结论:环氧树脂/萘/DBP/SiO2质量比为20:20:4:1时,制得的样品力学性能和吸液率较佳。通过对复合聚合物电解质样品的阻抗分析测试,实验所制备的样品离子电导率最高可达1.6×10-3 S/cm,满足结构化锂离子电池电性能需求。  相似文献   

9.
锂离子电池已广泛应用于便携式电子设备和电动汽车等领域,然而商用锂离子电池中含有大量易燃的碳酸酯类有机溶剂,容易造成安全隐患。离子液体具有蒸汽压低、化学结构设计多样性、热稳定性及电化学稳定性优异等优点,可以用来代替易燃有机溶剂,在电化学储能领域具有广阔的应用前景。聚离子液体是一类聚合物重复单元上含有阴、阳离子的新型聚合物电解质材料,兼具离子液体和聚合物固态电解质不漏液、易于加工的优势。根据离子液体和聚离子液体化学结构的设计合成及其在锂离子电池中的应用形式,综述了近年来离子液体电解质的研究进展,并提出了离子液体电解质未来的应用挑战和发展方向。  相似文献   

10.
在复合电解质的设计中,采用结构承载相和离子导电相相结合的方式来满足结构化锂离子电池对强度和电性能的综合要求。首先确定环氧树脂为结构承载相的基体以获得良好的力学性能,利用液态和固态两种不同的造孔剂在基体内构筑连通孔隙,再通过在连通孔隙中填充凝胶态电解质或吸附液态电解质的方式提高离子导通率。综合考虑结构承载相力学性能和吸液率,得出以下结论:环氧树脂/萘/DBP/Si O2质量比为20∶20∶4∶1时,制得的样品力学性能和吸液率较佳。通过对复合聚合物电解质样品的阻抗分析测试,实验所制备的样品离子电导率最高可达1.6×10–3 S/cm,满足结构化锂离子电池电性能需求。  相似文献   

11.
《Journal of power sources》2006,157(1):501-506
A novel microporous polymer electrolyte based on poly(vinylidene fluoride) and poly(ethylene oxide) (PVDF–PEO) blends was prepared by a simple phase inversion technique, in which the addition of PEO can obviously improve the pore configuration, such as pore size, porosity, and pore connectivity of PVDF-based microporous membranes, and hence, the room temperature ionic conductivity was greatly enhanced. The highest porosity of about 84% and ionic conductivity of about 2 mS cm−1 can be obtained when the weight ratio of PEO to PVDF is 50%. This implies that PVDF–PEO blends based microporous polymer electrolyte can be used as candidate electrolyte and/or separator material for high-performance rechargeable lithium batteries.  相似文献   

12.
In this study, a series of nanocomposite polymer electrolytes (NCPEs) with high conductivity and lithium ion transference number, PEO/LiClO4/SAP, were prepared from high molecular weight polyethylene oxide (PEO), LiClO4 and low content of homemade silica aerogel powder (SAP), which had higher surface area and pore volume than the conventional silica particle. From the SEM images it was found that the SAP nanoparticles were well dispersed in the PEO polymer electrolyte matrix. The characterization and interactions in the CPEs were studied by DSC, XRD, FT-IR and 7Li NMR analysis. The ac impedance results showed that the ionic conductivity of the CPE was significantly improved by the addition of the as-prepared SAP. The maximum ambient ionic conductivity obtained from the CPE with EO/Li = 6 and 2 wt.% of SAP (O6A2) was about threefold higher than that of the corresponding polymer electrolyte without SAP (O6). In addition, the lithium ion transference number (t+) of O6A2 at 70 °C was as high as 0.67, which was also three times higher than that of O6 and has not been previously reported for the PEO–LiX-based polymer electrolytes.  相似文献   

13.
Apart from PEO based solid polymer electrolytes, tailor-made gel polymer electrolytes based on blend/composite membranes of poly(vinylidene fluoride-co-hexafluoropropylene) and polyacrylonitrile are prepared by electrospinning using 14 wt% polymer solution in dimethylformamide. The membranes show uniform morphology with an average fiber diameter of 320-490 nm, high porosity and electrolyte uptake. Polymer electrolytes are prepared by soaking the electrospun membranes in 1 M lithium hexafluorophosphate in ethylene carbonate/dimethyl carbonate. Temperature dependent ionic conductivity and their electrochemical performance are studied. The blend/composite polymer electrolytes show good ionic conductivity in the range of 10−3 S cm−1 at ambient temperature and good electrochemical performance. All the Polymer electrolytes show an anodic stability >4.6 V with stable interfacial resistance with storage time. The prototype cell shows good charge-discharge properties and stable cycle performance with comparable capacity fade compared to liquid electrolyte under the test conditions.  相似文献   

14.
A promising solid polymer blend electrolyte is prepared by blending of poly(ethylene oxide) (PEO) with different content of amorphous poly(propylene carbonate) (PPC), in which the amorphous property of PPC is utilized to enhance the amorphous/free phase of solid polymer electrolyte, so as to achieve the purpose of modifying PEO-based solid polymer electrolyte. It indicates that the blending of PEO with PPC can effectively reduce the crystallization and increase the ion conductivity and electrochemical stability window of solid polymer electrolyte. When the content of PPC reaches 50%, the ionic conductivity reaches the maximum, which is 2.04 × 10−5 S cm−1 and 2.82 × 10−4 S cm−1 at 25°C and 60°C, respectively. The electrochemical stability window increases from 4.25 to 4.9 V and the interfacial stability of lithium metal anode is also greatly improved. The solid-state LiFePO4//Li battery with the PEO/50%PPC blend solid polymer electrolyte has good cycling stability, which the maximum discharge specific capacity is up to 125 mAh g−1 at a charge/discharge current density of 0.5 C at 60°C.  相似文献   

15.
Solid polymer composite electrolyte (SPCE) with good safety, easy processability, and high ionic conductivity was a promising solution to achieve the development of advanced solid‐state lithium battery. Herein, through electrospinning and subsequent calcination, the Li0.33La0.557TiO3 nanowires (LLTO‐NWs) with high ionic conductivity were synthesized. They were utilized to prepare polymer composite electrolytes which were composed of poly (ethylene oxide) (PEO), poly (propylene carbonate) (PPC), lithium bis (fluorosulfonyl)imide (LiTFSI), and LLTO‐NWs. Their structures, thermal properties, ionic conductivities, ion transference number, electrochemical stability window, as well as their compatibility with lithium metal, were studied. The results displayed that the maximum ionic conductivities of SPCE containing 8 wt.% LLTO‐NWs were 5.66 × 10?5 S cm?1 and 4.72 × 10?4 S cm?1 at room temperature and 60°C, respectively. The solid‐state LiFePO4/Li cells assembled with this novel SPCE exhibited an initial reversible discharge capacity of 135 mAh g?1 and good cycling stability at a charge/discharge current density of 0.5 C at 60°C.  相似文献   

16.
《Journal of power sources》2006,163(1):229-233
Solid polymer electrolytes composed of poly(ethylene oxide)(PEO), poly(oligo[oxyethylene]oxyterephthaloyl) and lithium perchlorate have been prepared and characterized. Addition of poly(oligo[oxyethylene]oxyterephthaloyl) to PEO/LiClO4 reduced the degree of crystallinity and improved the ambient temperature ionic conductivity. The blend polymer electrolyte containing 40 wt.% of poly(oligo[oxyethylene]oxyterephthaloyl) showed an ionic conductivity of 2.0 × 10−5 S cm−1 at room temperature and a sufficient electrochemical stability to allow application in the lithium batteries. By using the blend polymer electrolytes, the lithium metal polymer cells composed of lithium anode and LiCoO2 cathode were assembled and their cycling performances were evaluated at 40 °C.  相似文献   

17.
The electrochemical properties of a solid hybrid polymer electrolyte for lithium batteries based upon tri-ethyl sulfonium bis(trifluorosulfonyl) imide (S2TFSI), lithium TFSI, and poly(ethylene oxide) (PEO) is presented. We have synthesized homogenous freestanding films that possess low temperature ionic conductivity and wide electrochemical stability. The hybrid electrolyte has demonstrated ionic conductivity of 0.117 mS cm−1 at 0 °C, and 1.20 mS cm−1 at 25 °C. At slightly elevated temperature ionic conductivity is on the order of 10 mS cm−1. The hybrid electrolyte has demonstrated reversible stability against metallic lithium at the anodic interface and >4.5 V vs. Li/Li+ at the cathodic interface.  相似文献   

18.
《Journal of power sources》2006,156(2):581-588
ZSM-5 molecular sieves, usually known as shape-selective catalyst in a great deal of catalysis fields, due to its special pore size and two-dimensional interconnect channels. In this work, a novel PEO-based composite polymer electrolyte by using ZSM-5 as the filler has been developed. The interactions between ZSM-5 and PEO matrix are studied by DSC and SEM techniques. The effects of ZSM-5 on the electrochemical properties of the PEO-based electrolyte, such as ionic conductivity, lithium ion transference number, and interfacial stability with lithium electrode are studied by electrochemical impedance spectroscopy and steady-state current method. The experiment results show that ZSM-5 can enhance the ionic conductivity and increase the lithium ion transference number of PEO-based electrolyte more effectively comparing with traditional ceramic fillers such as SiO2 and Al2O3, resulting from its special framework topology structure. The excellent performances such as high ionic conductivity, good compatibility with lithium metal electrode, and broad electrochemical stability window suggesting that PEO–LiClO4/ZSM-5 composite polymer electrolyte can be used as candidate electrolyte materials for lithium polymer batteries.  相似文献   

19.
Solid polymer electrolytes provide high safety and good electrochemical stability in solid-state lithium batteries (SSLBs) compared with conventional liquid electrolytes. In this work, a novel solid polymer composite electrolyte based on poly (ethylene oxide) (PEO) filled with rod-like Zn2(OH)BO3 particles was prepared by a grinding process followed with a heating treatment process and a cold pressing process. The effect of the incorporation amount of rod-like Zn2(OH)BO3 particles on the ionic conductivity was investigated systemically. It is found that 10 mol% of rod-like Zn2(OH)BO3 particles addition resulted in a highest ionic conductivity of 2.78 × 10−5 at 30 °C and the improved ionic conductivity was considered to be caused by the reducing of PEO crystallinity and the increasing of Li ion migrating pathway on the interface between the Zn2(OH)BO3 and PEO. In addition, the optimum composite electrolyte exhibited a high electrochemical stability window of 4.51 V (vs. Li/Li+), good lithium stability and excellent thermal stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号