首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
通过静态试验,分别研究了河水中氯与氨氮的质量比、反应时间、pH值及初始NH3-N浓度对NH3-N去除效果的影响。试验结果表明,对于不同天气情况下的水样,氯与氨氮的质量比(以Cl2∶N计)为10∶1~12∶1时,NH3-N浓度可降低至0.5 mg/L以下;反应时间20 min时,NH3-N浓度可达到0.3 mg/L,工程应用中可将反应时间延长至30 min;pH对NH3-N去除效果没有明显影响,一般不需要调节河水pH;在pH值为8.0,氯与氨氮的质量比为12∶1,初始NH3-N浓度为0.5~3.0 mg/L时,反应后NH3-N浓度均<0.3 mg/L。  相似文献   

2.
针对现有单级自养脱氮技术普遍需要中高温(25~35℃)运行条件、处理成本高的突出问题,以高浓度氨氮(≥2 000 mg/L)废水为研究对象,考察曝停比对低温(15℃)单级自养脱氮系统脱氮效能的影响。结果表明,曝停比对系统的脱氮效能有影响,在15℃、DO为2. 5 mg/L条件下,反应器曝停比分别为2 h∶2 h、4 h∶4 h、6 h∶6 h、12 h∶12 h时,系统出水TN浓度分别为267. 5、238. 0、275. 1、367. 6 mg/L,去除率分别为86. 6%、88. 1%、86. 2%和81. 6%;曝停比为4 h∶4 h时,系统对TN的去除率较高。反应器停曝时间越长,反应器内液相DO、ORP值越低,液相DO、ORP水平影响自养脱氮系统微环境区域分布比例。  相似文献   

3.
高氨氮废水的亚硝化调控因素研究   总被引:1,自引:0,他引:1  
为进一步缩短亚硝化的启动时间,提高亚硝化速率,采用SBR反应器进行了快速实现高氨氮废水的亚硝化调控因素研究。结果表明:综合优化各影响因素如温度、pH值、DO、FA是缩短亚硝化启动时间的关键,pH值和DO的调控是准确把握反应进程,获得较高出水NO-2-N浓度的关键因素,适宜的温度与pH值可弥补低DO对亚硝化速率的负面影响,并且促进氨氧化菌(AOB)快速适应低DO浓度;在温度为30℃、pH值为8.0±0.2、DO为0.5~1.0 mg/L、进水氨氮负荷(ALR)为143 mg/(L·d)的条件下,启动亚硝化只需8 d;进水ALR达1 716 mg/(L·d),氨氮转化率高达94%以上,亚硝化率也基本稳定在90%以上,出水NO-2-N高达920~1 080 mg/L,亚硝化速率达1.1~1.2 kg/(m3·d),具有较高的氨氮负荷和亚硝化活性。  相似文献   

4.
为有效解决污染饮用水源(尤其是低温期氨氮)处理问题,进行了火山岩曝气生物滤池预处理技术及其节能运行研究。在气水比为1:1、进水氨氮为1.88~2.63 mg/L时,BAF采用间歇曝气方式能够和连续曝气方式一样使出水氨氮浓度小于《生活饮用水卫生标准》(GB5749—2006)中0.5 mg/L的限值。综合考虑相关因素,在常温期(水温≥10℃)最佳曝气方式为曝气0.5 h、停止曝气1 h,每天可以节约2/3的曝气量;在低温期(水温10℃)最佳曝气方式为曝气0.5 h、停止曝气0.5 h,每天可以节约1/2的曝气量。此外,BAF对COD_(Mn)、亚硝酸盐氮和浊度也有一定的去除效果。  相似文献   

5.
微污染东平河原水的生物预处理特性与效果   总被引:1,自引:0,他引:1  
以齿轮型生物载体为悬浮填料,在连续或间歇曝气条件下,改变气水比,对氨氮含量为1.5~2.5 mg/L、浊度为15~20 NTU的东平河微污染原水进行生物接触氧化预处理,研究其挂膜与处理特性以及停曝比、气水比等对去除氨氮的影响。结果表明:仅需7 d填料表面即附着一层黄褐色的生物膜,其以菌胶团为主,生物量达70 nmol/g。连续曝气,且气水比为(0.5∶1)和(1∶1)时,对氨氮的平均去除率分别为75%和66%;而在间歇曝气条件下,停曝比为(3∶5)~(3∶1)时,对氨氮的去除率增加显著,达80%~90%。氨氮浓度2 mg/L时,出水亚硝酸盐氮含量达0.15~0.25 mg/L,但仍满足饮用水水质标准。  相似文献   

6.
老龄化垃圾渗滤液的短程硝化效能研究   总被引:1,自引:0,他引:1  
老龄化垃圾渗滤液具有高氨低碳的水质特征.以构建能承受高氨氮浓度的自养生物脱氮系统为目标,考察了DO、负荷、pH及挂膜密度对该系统短程硝化效能的影响.结果表明:在温度为30℃、DO为2.5 mg/L、氨氮负荷为1.0 kg/(m3·d)、pH值为8.0、挂膜密度为30%、反应器运行工况为进水0.25 h/反应23 h/沉淀0.5 h/出水0.25 h、进水氨氮为2 000 mg/L的条件下,系统能够获得87.7%的氨氮去除率及77.4%的亚硝态氮积累率.挂膜密度对系统自养脱氮效能的影响显著,在挂膜密度为60%时,系统对总氮的去除率为55.5%,其中自养脱氮的分担率约为76.6%.  相似文献   

7.
悬浮载体生物膜反应器的亚硝酸型硝化研究   总被引:2,自引:0,他引:2  
采用多孔聚合物载体生物膜反应器对亚硝酸型硝化进行了研究,考察了连续流情况下pH、DO和水力停留时间(HRT)对氨氮降解和亚硝化反应的影响.在进水氨氮浓度为420mg/L、温度为25℃的情况下,当HRT为24h、DO为2mg/L、pH值为8时,对氨氮的去除率>75%,亚硝酸盐氮的积累率达到了70%以上,实现了对氨氮的高效去除和稳定的亚硝酸盐氮积累.间歇试验结果表明,亚硝酸盐氮的生成速率为5.868 4 mg/(L·h),而硝酸盐氮的生成速率仅为0.9931mg/(L·h),即生物膜上氨氧化菌的数量和活性明显高于亚硝酸盐氧化菌的.  相似文献   

8.
目前废水生物脱氮技术着重于对氨氮的去除,很难达到去除总氮的目的。为了更好的去除氨氮及总氮,实验研究了不同进水pH、溶解氧浓度、进水C/N比及不同温度条件下间歇生物反应器中氮的存在状态及其转化规律。结果表明:在生物反应器运行初期氨氮、总氮浓度均有明显的下降;进水氨氮浓度在30~70 mg/L的污水,优化处理操作参数为pH值8.0±0.5,溶解氧(4.2±0.5)mg/L,温度20~26℃,C/N为6,曝气时间6 h,沉淀2 h,氨氮去除率可达到90%,总氮去除率接近60%。  相似文献   

9.
MAP法处理高氨氮废水的影响因素研究   总被引:1,自引:0,他引:1  
采用磷酸铵镁沉淀法处理高氨氮废水,考察了pH、反应温度、反应时间以及镁盐和磷盐沉淀剂与氨氮的配比等因素对去除氨氮的影响.结果表明,在pH值为10、Mg:N:P(物质的量之比)=1.1:1.0:1.3、温度为18~30 ℃的条件下,自动搅拌、反应并沉淀20 min,氨氮浓度可由1 000 mg/L降到76 mg/L,去除率高达92.4%,为后续生化处理奠定了基础.  相似文献   

10.
采用序批式反应器(SBR)短程硝化系统处理老龄化垃圾渗滤液,研究有机物浓度、水力停留时间(HRT)、pH值、温度对短程硝化系统的影响。以硝化污泥接种反应器,在溶解氧为1.0~1.2 mg/L和温度为(35±1)℃下达到亚硝酸氮的快速积累。结果表明,在进水氨氮为300mg/L、COD为600 mg/L、HRT为24 h、pH值为7.5~8.5、温度为(35±1)℃、溶解氧浓度保持不变的条件下,出水氨氮平均为134.0 mg/L,出水亚硝酸氮平均为142.5 mg/L,对氨氮的平均去除率为55.3%,NO2--N/NH4+-N平均值为1.06,出水硝酸氮平均为10.2 mg/L,亚硝酸氮的平均积累率为93.3%,对COD的去除率稳定在38%左右。  相似文献   

11.
固定化包埋硝化菌去除源水中氨氮研究   总被引:8,自引:3,他引:8  
采用固定化包埋技术将硝化菌包埋在半透性聚合物内,并利用内循环流化床生物反应器(包埋颗粒的体积填充率为10%)进行了处理低浓度氨氮人工配水的连续流试验,同时借助扫描电子显微镜对包埋硝化菌菌群的分布进行了分析。结果表明,在水温为20~30℃、DO为3~4mg/L的条件下,当进水NH4+-N为10~15 mg/L、HRT为30 m in时,对NH4+-N的去除率>90%;当进水NH4+-N<10 mg/L、HRT为27 m in时,出水NH4+-N和NO2--N浓度都稳定在0.25 mg/L以下,且出水pH值维持在7.2~7.3,NH4+-N去除负荷达256.1 mg/(L.h)。颗粒的呼吸活性从驯化阶段的319.4 mg/(L.h)增至高效段的1 170.9 mg/(L.h)。  相似文献   

12.
针对东江原水季节性氨氮超标的问题,对江南水厂进行了提标改造。将现有构筑物沉淀池改造为升流式生物预处理滤池,滤速为9.8 m/h,气水比为0.5~1.0,空床接触时间为16.2min。当原水氨氮值在1.5~3.5 mg/L波动时,出水氨氮均低于0.5 mg/L,满足《生活饮用水卫生标准》(GB 5749—2006)。  相似文献   

13.
采用三级厌氧/好氧一体式折流板生物反应器处理马铃薯淀粉废水,并在好氧室添加多孔炉渣作为填料,考察了该工艺的处理效能。结果表明,在运行温度为25~35℃、pH值为5.0~8.5的条件下,当废水的COD为1 400~3 000 mg/L、氨氮为15.0~24.0 mg/L时,系统的出水COD≤200 mg/L、氨氮为10.8 mg/L,对COD和氨氮的去除率分别为(90%~96%)、(42.7%~53.0%);多孔炉渣填料的投加可提高好氧室的处理效果。  相似文献   

14.
低C/N值下短程硝化反应器的启动及影响因素   总被引:2,自引:0,他引:2  
采用CSTR反应器对低C/N值模拟废水短程硝化的启动过程及影响因素进行了研究。结果表明,在进水NH4+-N和COD分别为210和300 mg/L的条件下,控制进水pH值为7.8~8.2、温度为(30±0.5)℃、DO为1.0~1.5 mg/L、HRT=1.25 d,2个月即可成功启动短程硝化,亚硝态氮积累率可达99%以上,对氨氮的去除率稳定在95%以上。DO、污泥龄、氨氮负荷及pH是影响短程硝化稳定运行的主要因素。  相似文献   

15.
采用厌氧复合床/生物铁法串联工艺处理维生素B1生产废水,考察了水力停留时间(HRT)、反应温度、pH、溶解氧(DO)浓度等因素对处理效果的影响,确定了系统的最佳运行参数.结果表明,系统的最佳运行参数:厌氧复合床的HRT为12 h、反应温度为35 ℃、pH值为7.5,生物铁反应器中污泥含铁率为6%、HRT为12 h、DO浓度为3 mg/L;在最佳运行条件下,当进水COD和SO2-4浓度分别为2 836、1 250 mg/L时,系统出水COD和SO2-4浓度分别可降至171、137 mg/L,满足<污水排入城市下水道水质标准>(CJ 3082-1999)的要求.  相似文献   

16.
采用前置厌氧氨氧化生物滤池+亚硝化生物滤池的组合工艺,对高氨氮焦化废水进行脱氮研究,利用亚硝化生物滤池回流液中的亚硝酸盐氮与废水中的氨氮进行反应,以达到脱氮的目的,同时考察了HRT、回流比、DO浓度、p H值等参数对脱氮效果的影响。结果表明:当废水中的氨氮和COD浓度分别为(100~120)、(60~80)mg/L时,控制厌氧氨氧化段混合进水的p H值为8.0、HRT为30 h,亚硝化段出口DO浓度为0.6~1.0 mg/L,回流比为300%,对废水的脱氮率可稳定在80%左右。  相似文献   

17.
采用序批式生物膜反应器(SBBR)同步硝化反硝化(SND)技术处理南方地区微污染水源水,通过控制温度在28~31℃、低DO浓度和较高pH值实现了SND,重点考察了DO浓度和pH值对系统脱氮效果的影响。结果表明,当DO浓度为0.3~1.1 mg/L时,对NH_4~+-N和TN的去除效果较好,平均去除率分别为91.9%和85.3%;当pH值为8.0±0.1时,系统的脱氮效果最好,对NH_4~+-N和TN的平均去除率分别可达93.9%和92.3%。在最佳工况条件下,出水氨氮和TN浓度均可达到《地表水环境质量标准》(GB 3838—2002)的Ⅲ类水质要求。  相似文献   

18.
好氧序批式MBR处理高浓氨氮废水   总被引:8,自引:0,他引:8  
采用好氧序批式膜生物反应器(SMBR)处理高浓度氨氮废水,考察了对NH 4 -N和COD的去除效果、影响硝化效果的因素以及混合液中残留COD与膜通量的关系。结果表明:在HRT为 4. 7h、SRT为 30d、气水比为 100∶1、pH值为 7. 0~8. 0、进水COD平均值为 142. 8mg/L的条件下,当进水氨氮高达 800mg/L时出水氨氮值仍能稳定在 10mg/L以下,出水COD平均值为31. 3mg/L。  相似文献   

19.
采用MBR工艺处理含7-ACA废水,考察了进水7-ACA浓度、DO浓度、pH值、温度等因素对处理效果的影响。结果表明,随着进水7-ACA浓度的升高,对7-ACA的去除效果先升高后下降,当进水7-ACA浓度为30 mg/L时,对7-ACA的去除率最高,为65.6%;另外,在进水7-ACA浓度为100 mg/L的条件下,MBR处理含7-ACA废水的最佳参数如下:DO浓度为2.5~3.5 mg/L、pH值为7~9、温度为35℃。  相似文献   

20.
针对制药废水浓度高、生物毒性强、可生化性差及难降解等特点,采用UASB+A/O为主体的生化工艺对江苏某制药企业废水进行了处理,结果表明,当温度为20~30℃时,微生物的驯化培养可在70 d内完成。当进水COD浓度为3 000~5 000 mg/L、盐分浓度5 000 mg/L、氨氮浓度60 mg/L时,在正常的工艺运行条件下,出水COD浓度稳定在400 mg/L以下,氨氮浓度稳定在10 mg/L以下,出水水质达到园区纳管标准,运行费用为2.33元/m3。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号