共查询到20条相似文献,搜索用时 15 毫秒
1.
Compared with grinding, hard turning is competitive in many cases, with substantial benefits. However, hard turning applications are not preferred, due to the existence of the process-induced white layer on the component surface, which is often assumed to be detrimental to component life. Nevertheless, white layer properties have not been well understood or clearly defined, especially the properties of the white layer induced in hard turning as against grinding. A clear understanding of white layer properties will provide a solid physics basis for product performance analysis and useful data for process selection. In this study, benchmark hard turning and cylindrical grinding experiments were conducted to generate thick white layers for reliable measurement. It was found that the properties of white and dark layers by hard turning and grinding are fundamentally different in four aspects: surface structure characteristics, microhardness, microstructures, and chemical composition. A white layer is not untempered martensite in terms of retained austenite. Additionally, a thick white layer can be produced in grinding under certain conditions. 相似文献
2.
White layers and thermal modeling of hard turned surfaces 总被引:4,自引:0,他引:4
Y. Kevin Chou Chris J. Evans 《International Journal of Machine Tools and Manufacture》1999,39(12):1863
White layers in hard turned surfaces are identified, characterized and measured as a function of tool flank wear and cutting speed. White layer depth progressively increases with flank wear. It also increases with speed, but approaches an asymptote. A thermal model based on Jaeger's moving heat source problems (J.C. Jaeger, Moving source of heat and the temperature at sliding contacts, in: Proceedings of the Royal Society, NSW, vol. 56, pp. 203–224) is applied to simulate the temperature field in machined surfaces and to estimate white layer depth in terms of the penetration depth for a given critical temperature. The analysis shows good agreement with the trend in experimental results. White layer formation seems to be dominantly a thermal process involving phase transformation of the steel, possibly plastic strain activated; flank wear land rubbing may be a primary heat source for white layer formation. A strong material dependence of surface alteration is also observed. 相似文献
3.
Gaurav Bartarya S.K. Choudhury 《International Journal of Machine Tools and Manufacture》2012,53(1):1-14
Hard turning is gaining grounds for machining hardened steels as it has several benefits over grinding. There are several issues, which should be understood and dealt with, to achieve successful performance of the process. Researchers have worked upon several aspects related to hard turning. The present work is an effort to review some of these works and to understand the key issues related to process performance. The review shows that the type of tool material, cutting edge geometry and cutting parameters affect the process efficiencies in terms of tool forces, surface integrities integrity, and white layer. Adequate machine rigidity is a must essential to minimize the process inaccuracies. Also moreover, for finish hard turning, where the depth of cut is less than the nose radius of the tool, the forces deviate from the conventional trends as the radial force component is the maximum and axial force component becomes minimum. The present work finally lists down certain areas that can be taken up for further research in hard turning. 相似文献
4.
3D modeling of residual stresses induced in finish turning of an AISI304L stainless steel 总被引:1,自引:0,他引:1
Frédéric Valiorgue Joël RechHédi Hamdi Philippe GillesJean Michel Bergheau 《International Journal of Machine Tools and Manufacture》2012,53(1):77-90
This paper addresses the development of a new methodology predicting residual stresses induced in finish turning of a AISI304L stainless steel. A hybrid approach combining experimental results and a numerical model is applied. The model simulates the residual stresses generation by applying equivalent thermo-mechanical loadings onto the machined surface without modeling the chip removal process, which enables rapid calculation. The shape and the intensity of equivalent thermo-mechanical loadings are identified through experimental measurements. Friction tests enable to model the thermal and mechanical loadings along the tool-workmaterial interface. Orthogonal cutting tests provide thermal and mechanical loadings below the primary and third shear zone. This model has already been presented in several papers, but only in a 2D configuration. The objective of this paper is to transfer this hybrid approach into a 3D configuration, which is closer to a concrete longitudinal turning operation. Based on this new model, the paper aims at investigating the interactions between each revolution. It is shown that around five revolutions are necessary to reach a steady state. Finally numerical results are compared with experimental measurements obtained by X-Ray diffraction. It is shown that residual stresses cannot be considered as homogeneous over the surface due to tool's feed. Additionally, the X-Ray beam is much too large to be able to quantify this heterogeneity. Based on average numerical values coherent with average values obtained by X-Ray diffraction, it is shown that the numerical model provides consistent results compared to experimental measurements for a large range of cutting speed and feed. 相似文献
5.
In this study the surface finish produced by hard turning of a 41Cr4 low-alloy steel quenched to about 60 HRC hardness, using mixed Al2O3-TiC ceramic inserts, was subsequently modified by superfinishing and multipass burnishing operations. In the case of hard turning surfaces were produced by conventional and Wiper cutting tool inserts. The main goal of this study was to examine how additional abrasive and non-removal technological operations change 2D and 3D roughness parameters and enhance service properties of the machined surfaces. It was documented that both superfinishing and burnishing operations allow to obtain smoother surfaces with lower surface roughness and better bearing characteristics. 相似文献
6.
Accuracy of hard turning 总被引:1,自引:0,他引:1
J. Kundrk B. Karpuschewski K. Gyani V. Bana 《Journal of Materials Processing Technology》2008,202(1-3):328-338
Nowadays, hard turning is frequently used to replace grinding. The economic benefits of hard turning are obvious but for achievable accuracy the situation is somewhat ambiguous. Although machine tool factories offer lathes with the same accuracy as grinding machines in some cases problems may arise in keeping the prescribed geometrical accuracy. Investigations were performed in a working environment in order to determine the attainable size, form and positional accuracy obtained with hard turning. Error sources of machining errors that occurred in hard turning and in grinding were taken into account, giving typical differences between the two processes. In the parts produced in series, size deviations were measured as well as out-of-roundness, cylindricity error and parallelism error of the bore's generatrices. The workpieces used for the investigation are disc-type parts with bores, i.e., gears that are built into transmissions. Our first measuring series evaluates the achievable accuracy with hard turning while the second includes the comparison of grinding with hard turning. The most important error sources are identified. We present measures for keeping prescribed tolerances and propose methods for eliminating the means error source. 相似文献
7.
Surface integrity when machining age hardened Inconel 718 with coated carbide cutting tools 总被引:2,自引:0,他引:2
R. M. Arunachalam M. A. Mannan A. C. Spowage 《International Journal of Machine Tools and Manufacture》2004,44(14):1481-1491
Considerable attention has been given to the use of ceramic cutting tools for improving productivity in the machining of heat resistant super alloys (HRSA). However, because of their negative influence on the surface integrity, ceramic tools are generally avoided particularly for finishing applications. As a result the main high end manufacturers are more or less dependent on carbide cutting tools for finishing operations. Still the improper use of carbide cutting tools can also result in poor surface integrity. The objective of this investigation is to develop a set of guidelines, which will assist the selection of the appropriate cutting tools and conditions for generating favorable compressive residual stresses. This paper specifically deals with residual stresses and surface finish components of surface integrity when machining (facing) age hardened Inconel 718 using two grades of coated carbide cutting tools specifically developed for machining HRSAs. The cutting conditions were obtained from investigations based on optimum tool performance. The effect of insert shape, cutting edge preparation, type and nose radius on both residual stresses and surface finish was studied at this optimum cutting condition. This investigation, suggested that coated carbide cutting tool inserts of round shape, chamfered cutting edge preparation, negative type and small nose radius (0.8 mm) and coolant will generate primarily compressive residual stresses. 相似文献
8.
Predictive modeling of surface roughness and tool wear in hard turning using regression and neural networks 总被引:14,自引:1,他引:14
In machining of parts, surface quality is one of the most specified customer requirements. Major indication of surface quality on machined parts is surface roughness. Finish hard turning using Cubic Boron Nitride (CBN) tools allows manufacturers to simplify their processes and still achieve the desired surface roughness. There are various machining parameters have an effect on the surface roughness, but those effects have not been adequately quantified. In order for manufacturers to maximize their gains from utilizing finish hard turning, accurate predictive models for surface roughness and tool wear must be constructed. This paper utilizes neural network modeling to predict surface roughness and tool flank wear over the machining time for variety of cutting conditions in finish hard turning. Regression models are also developed in order to capture process specific parameters. A set of sparse experimental data for finish turning of hardened AISI 52100 steel obtained from literature and the experimental data obtained from performed experiments in finish turning of hardened AISI H-13 steel have been utilized. The data sets from measured surface roughness and tool flank wear were employed to train the neural network models. Trained neural network models were used in predicting surface roughness and tool flank wear for other cutting conditions. A comparison of neural network models with regression models is also carried out. Predictive neural network models are found to be capable of better predictions for surface roughness and tool flank wear within the range that they had been trained.Predictive neural network modeling is also extended to predict tool wear and surface roughness patterns seen in finish hard turning processes. Decrease in the feed rate resulted in better surface roughness but slightly faster tool wear development, and increasing cutting speed resulted in significant increase in tool wear development but resulted in better surface roughness. Increase in the workpiece hardness resulted in better surface roughness but higher tool wear. Overall, CBN inserts with honed edge geometry performed better both in terms of surface roughness and tool wear development. 相似文献
9.
G. Poulachon A. Albert M. Schluraff I.S. Jawahir 《International Journal of Machine Tools and Manufacture》2005,45(2):250-218
White layers formed in machining of hardened alloys are known to be very hard and resistant to standard etchants used in metallographic studies. Many studies have been performed on this subject, but only with little progress showing definite results concerning the actual effectiveness of white layer formation. Hence, the basic question that remains unanswered is: are the white layers a tribological advantage for the manufacturing industry producing parts/components from hard alloys? The focus of this study is to investigate the evolution of white layers produced during progressive tool flank wear in dry hard turning with CBN (cubic boron nitride) tools, and to correlate this with the surface integrity of the machined surface. The following four materials were machined: X160CrMoV12 cold work steel (AISI D2), X38CrMoV5 hot work steel (AISI H11), 35NiCrMo16 high toughness steel and 100Cr6 bearing steel (AISI 52100). Samples of chips were metallographically processed and observed under an electronic microscope to determine whether white layers are present or not. More specifically, chip-forms/shapes were studied to determine how they developed during machining with potential appearance of white layers, with a view to correlating the chip-forms/shapes with the white layer formation. Finally, by using scanning electron microscopy and EDS techniques on these chip samples, properties and microstructures of white layers were deduced in order to verify some of the prevalent theories. 相似文献
10.
Effect of tool nose radius and tool wear on residual stress distribution in hard turning of bearing steel 总被引:4,自引:0,他引:4
Meng Liu Jun-ichiro Takagi Akira Tsukuda 《Journal of Materials Processing Technology》2004,150(3):234-241
This study presents a experimental investigation to clarify the effects of tool nose radius and tool wear on residual stress distribution in hard turning of bearing steel JIS SUJ2. Three types of CBN tools with different nose radius (0.4, 0.8 and 1.2 mm) were used in this study. The residual stresses beneath the machined surface were measured using X-ray diffraction technique and electro-polishing technique. The results obtained in this study show that the tool nose radius affects the residual stress distribution significantly. Especially the effect on the residual stresses at the machined surface at early stage of cutting process is remarkable. For the tool wear, as the tool wear increases, the residual stress at the machined surface shifts to tensile stress range and the residual compressive stress beneath the machined surface increases greatly. 相似文献
11.
In this study the surface integrity produced by oblique turning of a range of iron-based materials including C45 carbon, 41Cr4 low-alloy hardened, X6CrNiTi18-10 stainless steels and EN-GJS-500-7 spheroidal iron was quantified by means of 2D and 3D surface roughness parameters, strain-hardening effects and associated residual stresses. Surfaces were produced by a special straight-edged cutting tool with large inclination angle of 55° equipped with carbide and mixed Al2O3–TiC ceramic cutting tool inserts. It was documented that oblique machining performed with relatively higher feed rate allows obtaining lower surface roughness and, in general, better bearing characteristics. Moreover, compressive stresses with the maximum value located close to the machined surface and parabolic profile can be induced into the surface layer. The magnitude of stresses depends on the strain-hardening rate of the surface layer. 相似文献
12.
Cubic boron nitride (cBN)-titanium nitride (TiN) composite coating combines the thermal stability and super abrasiveness of cubic boron nitride (cBN) and the good lubricity of TiN, offering the opportunity for designing cutting tools with application specific new geometries (flat, chip breaker, and round shape) and cost effectiveness. In particular, the cBN based coating on carbide inserts is complementary to widely used polycrystalline cubic boron nitride (PCBN) compact tools for finish hard turning applications. This paper reports the results of a study addressing the surface morphology, surface roughness, coating cross section, chemical composition, crystal structure, microhardness, adhesion, and the wear life of this cBN-based coating deposited on carbide inserts (SNMG432) for finish turning of hardened AISI 4340 steel bars. The surface quality of machined workpieces in terms of their surface roughness and white layer formation are also analyzed and the results are presented. 相似文献
13.
The widespread use of hard turning processes in industry has been facilitated by efficient work holding methods. In this paper, a novel application of the shoe-centerless work holding method is proposed for hard turning. Since changes in cutting forces during hard turning affect force balance, rotational instability can occur with shoe-centerless work holding. This paper describes the effect of changes in cutting forces due to tool wear on work rotational stability during shoe-centerless hard turning. It also presents guidelines to determine the optimum shoe setup angles for various hard turning process conditions to ensure work rotational stability and geometrical rounding stability. 相似文献
14.
C. Scheffer H. Kratz P. S. Heyns F. Klocke 《International Journal of Machine Tools and Manufacture》2003,43(10):76
This paper describes an in-depth study on the development of a system for monitoring tool wear in hard turning. Hard turning is used in the manufacturing industry as an economic alternative to grinding, but the reliability of hard turning processes is often unpredictable. One of the main factors affecting the reliability of hard turning is tool wear. Conventional wear-monitoring systems for turning operations cannot be used for monitoring tools used in hard turning because a conglomeration of phenomena, such as chip formation, tool wear and surface finish during hard turning, exhibits unique behavior not found in regular turning operations. In this study, various aspects associated with hard turning were investigated with the aim of designing an accurate tool wear-monitoring system for hard turning. The findings of the investigation showed that the best method to monitor tool wear during hard turning would be by means of force-based monitoring with an Artificial Intelligence (AI) model. The novel formulation of the proposed AI model enables it to provide an accurate solution for monitoring crater and flank wear during hard turning. The suggested wear-monitoring system is simple and flexible enough for online implementation, which will allow more reliable hard turning in industry. 相似文献
15.
Nanostructural characterization of hard turned surface layers of carburized steels was done to study the effect of tool design, tool wear and turning parameters on the near surface material transformations. To quantify subsurface evolution, numerical predictions were correlated with the measured structural and hardness parameters. Results show that the process design space can be partitioned into three regions based on thermal phase transformations, plastic grain refinement, and where both mechanisms are active. These relationships between the processing conditions and structural parameters are further explored through process maps based on Zener–Holloman parameter and the Hall–Petch relationship. 相似文献
16.
This paper presents a performance assessment of rotary tool during machining hardened steel. The investigation includes an analysis of chip morphology and modes of tool wear. The effect of tool geometry and type of cutting tool material on the tool self-propelled motion are also investigated. Several tool materials were tested for wear resistance including carbide, coated carbide, and ceramics. The self-propelled coated carbide tools showed superior wear resistance. This was demonstrated by evenly distributed flank wear with no evidence of crater wear. The characteristics of temperature generated during machining with the rotary tool are studied. It was shown that reduced tool temperature eliminates the diffusion wear and dominates the abrasion wear. Also, increasing the tool rotational speed shifted the maximum temperature at the chip–tool interface towards the cutting edge. 相似文献
17.
Hard machining is a competitive finishing process with substantial benefits in manufacturing precision mechanical components. However, hard machining applications have been remaining slow due to the existence of surface damage such as white layer. The process-induced white layer may have detrimental effect on component life. However, the white layer on a machined component surface could be found only after machining. This post-process scenario imposes a great potential danger to subsequent product performance such as fatigue life. Therefore, real-time monitoring of white layer formation during hard machining has significant economical and durability importance. In this study, a real-time acoustic emission (AE) monitoring system was developed to investigate the sensitivity of a broad AE signal parameters including RMS, frequency, amplitude, and count rate to white layer and corresponding surface finish and tool wear. The experimental results show that AE RMS, frequency, and count rate have good correlation with white layer formation and, thus, may be used to monitor surface integrity factors. The findings provide fundamental information to develop practical on-line AE monitoring system for surface integrity in hard machining. 相似文献
18.
Khaider Bouacha Mohamed Athmane Yallese Tarek Mabrouki Jean-François Rigal 《International Journal of Refractory Metals and Hard Materials》2010
The present work concerns an experimental study of hard turning with CBN tool of AISI 52100 bearing steel, hardened at 64 HRC. The main objectives are firstly focused on delimiting the hard turning domain and investigating tool wear and forces behaviour evolution versus variations of workpiece hardness and cutting speed. Secondly, the relationship between cutting parameters (cutting speed, feed rate and depth of cut) and machining output variables (surface roughness, cutting forces) through the response surface methodology (RSM) are analysed and modeled. The combined effects of the cutting parameters on machining output variables are investigated while employing the analysis of variance (ANOVA). The quadratic model of RSM associated with response optimization technique and composite desirability was used to find optimum values of machining parameters with respect to objectives (surface roughness and cutting force values). Results show how much surface roughness is mainly influenced by feed rate and cutting speed. Also, it is underlined that the thrust force is the highest of cutting force components, and it is highly sensitive to workpiece hardness, negative rake angle and tool wear evolution. Finally, the depth of cut exhibits maximum influence on cutting forces as compared to the feed rate and cutting speed. 相似文献
19.
W.J. Zong T. Sun D. Li K. Cheng Y.C. Liang 《Journal of Materials Processing Technology》2006,180(1-3):271-278
In this work, based on the updated Lagrangian formulation and the commercial available software, Marc2001, a coupled thermo-mechanical plane-strain large deformation orthogonal cutting FE model is presented to simulate the diamond turning process and predict the residual stresses on the machined surface of workpiece. In order to consider the interactive influences of cutting edge radius, cutting velocity, rake angle and clearance angle on residual stresses, all simulations are programmed by an orthogonal design method, i.e. the combination design of general rotary method. As expected, two regression equations of tensile and compressive residual stresses are deduced according to the simulated results. The measured results in diamond turning show that the predicted results have a good consistency with the experimental ones. Therefore, some related analyses are carried out for the influencing factors based on the regression equations. Finally, the optimal analyses indicate that a rake angle of 15° and a clearance angle of 10° are the optimum geometry of a diamond tool in turning of ductile materials when this tool has a cutting edge radius of 100–300 nm. 相似文献
20.
Reduction of wear induced surface zone effects during hard turning by means of new tool geometries 总被引:1,自引:1,他引:1
Tool wear during hard turning influences the properties of the workpiece surface and subsurface layer significantly. Due to
increasing flank face wear at the cutting edge, the contact conditions between tool and workpiece are changed. The mechanical
and thermal load in the workpiece surface increases during the process. This favors the formation of white layers and of residual
stress gradients in the subsurface zone of hardened workpieces whereby the components life time is reduced. The article presents
novel modifications of the tool geometry, which leads to a considerable prolongation of the tool life time. This advanced
tool design enables the production of constant material properties in the surface and subsurface zone during a broad time
window. 相似文献