首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
State of the art in wire electrical discharge machining (WEDM)   总被引:9,自引:1,他引:9  
Wire electrical discharge machining (WEDM) is a specialised thermal machining process capable of accurately machining parts with varying hardness or complex shapes, which have sharp edges that are very difficult to be machined by the main stream machining processes. This practical technology of the WEDM process is based on the conventional EDM sparking phenomenon utilising the widely accepted non-contact technique of material removal. Since the introduction of the process, WEDM has evolved from a simple means of making tools and dies to the best alternative of producing micro-scale parts with the highest degree of dimensional accuracy and surface finish quality.Over the years, the WEDM process has remained as a competitive and economical machining option fulfilling the demanding machining requirements imposed by the short product development cycles and the growing cost pressures. However, the risk of wire breakage and bending has undermined the full potential of the process drastically reducing the efficiency and accuracy of the WEDM operation. A significant amount of research has explored the different methodologies of achieving the ultimate WEDM goals of optimising the numerous process parameters analytically with the total elimination of the wire breakages thereby also improving the overall machining reliability.This paper reviews the vast array of research work carried out from the spin-off from the EDM process to the development of the WEDM. It reports on the WEDM research involving the optimisation of the process parameters surveying the influence of the various factors affecting the machining performance and productivity. The paper also highlights the adaptive monitoring and control of the process investigating the feasibility of the different control strategies of obtaining the optimal machining conditions. A wide range of WEDM industrial applications are reported together with the development of the hybrid machining processes. The final part of the paper discusses these developments and outlines the possible trends for future WEDM research.  相似文献   

2.
EDM is an efficient machining process for the fabrication of a micro-metal hole with various advantages resulting from its characteristics of non-contact and thermal process. However, this process has a serious problem caused by the tool wear, which significantly deteriorates the machining accuracy. In this paper, a geometric simulation model of EDM drilling process with cylindrical tool is proposed to predict the geometries of tool and drilled hole. The geometries of tool and workpiece are represented by two-dimensional matrix. For accurate prediction of their geometries, the tool motion, the sparking gap width, the spark frequency, the crater made by a single spark, and the tool wear ratio are considered as simulation parameters. To verify the simulation model the prediction results are compared with the actual experimental ones. Consequently, it is shown that the geometry prediction results match the experimental ones well within the error of 13%. Developed model can be used in offline compensation of tool wear in the fabrication of a blind hole. For the purpose of this, a compensation scheme based on the developed model is introduced, it is then demonstrated that the scheme is successfully applied to an actual micro-hole machining.  相似文献   

3.
The capability of machining intricate features with high dimensional accuracy in hard and difficult-to-cut material has made electrodischarge machining (EDM) process as an inevitable and one of the most popular non-conventional machining processes. In recent years, both EDM and micro-EDM processes are being used extensively in the field of mould making, production of dies, cavities and complex 3D structures using difficult-to-cut tungsten carbide and its composites. The objective of this paper is to provide a state of the art in the field of EDM and micro-EDM of tungsten carbide and its composites. The review begins with a brief introduction on the EDM and micro-EDM processes. The research and developments in electrodischarge machining of tungsten carbide are grouped broadly into conventional EDM of tungsten carbide, micro-EDM of tungsten carbide and current research trends in EDM and micro-EDM of tungsten carbide. The problems and challenges in the area of conventional and micro-EDM of tungsten carbide and the importance of compound and hybrid machining processes are discussed. A summary of the future research directions based on the review is presented at the final section.  相似文献   

4.
The electrical discharge machining (EDM) process is, by far, the most popular amongst the non-conventional machining processes. The technology is optimum for accurate machining of complicated shapes in hard materials, required in the modern industry. However, although a lot of EDM machines are widely applied for many years, fundamental knowledge of the process is still limited. The complex nature of the process involves simultaneous interaction of thermal, plasma temperature and electromagnetism factors, which makes the machining process modeling very difficult. In this paper, based on the analysis of the electric discharge machining (EDM) process, a plate capacitor model is constructed to describe the discharging process in a pulse time. The whole EDM process is divided into four stages, successively as interelectrode electric-field establishment, electric discharge channel formation, stable EDM and deionization, the interaction of each stage and the distribution function of EDM energy are deduced using the field electron emission theory. For the purpose of analyzing the effect of the single factor, a set of machining through-hole experiments were carried out and investigated. The study shows that critical electric-field intensity and the effective discharging time rate play major roles on the improvement of machining efficiency; the model can explain the differences of machining efficiency using different materials of tool pole and different EDM parameters; and the theoretical results are concordant with the experimental data well.  相似文献   

5.
Electrical discharge machining (EDM) is widely used in the production of dies. This paper describes an investigation into the optimisation of the process which uses the effect of carbon which has migrated from the dielectric to tungsten–copper electrodes. This work has led to the development of a two-stage EDM machining process where different EDM settings are used for the two stages of the process giving a significantly improved material removal rate for a given tool wear ratio.  相似文献   

6.
Tool path generation for 4-axis contour EDM rough machining   总被引:1,自引:0,他引:1  
Contour or CNC EDM machining of free-form surfaces requires tool paths that are different from those used in mechanical milling although in geometry both processes are described by the similar model of intersection between the rotating tool and the workpiece. In this paper, special requirements on tool paths demanded by contour EDM machining are studied and a two-phase tool path generation method for 4-axis contour EDM rough milling with a cylindrical electrode is developed. In the first phase of the method, initial tool paths for virtual 3-axis milling are generated in a commercial CAD/CAM system—Unigraphics, which provides users with plenty of options in choosing suitable tool path patterns. From these tool paths, cutter contact (CC) points between electrode and workpiece are reversely calculated. In the second phase, considering the special requirements of EDM machining, which include discharging gap compensation, electrode wear compensation, DC arcing prevention, etc., the electrode is adjusted to an optimized interference-free orientation by rotating it around the CC points obtained in the previous phase. This new orientation together with the reference point of electrode is output as new tool path. The whole algorithm has been integrated into Unigraphics, machining simulations and tests have been conducted for 4-axis contour EDM rough machining.  相似文献   

7.
A review on current research trends in electrical discharge machining (EDM)   总被引:2,自引:1,他引:2  
Electrical discharge machining (EDM) is one of the earliest non-traditional machining processes. EDM process is based on thermoelectric energy between the work piece and an electrode. A pulse discharge occurs in a small gap between the work piece and the electrode and removes the unwanted material from the parent metal through melting and vaporising. The electrode and the work piece must have electrical conductivity in order to generate the spark. There are various types of products which can be produced using EDM such as dies and moulds. Parts of aerospace, automotive industry and surgical components can be finished by EDM. This paper reviews the research trends in EDM on ultrasonic vibration, dry EDM machining, EDM with powder additives, EDM in water and modeling technique in predicting EDM performances.  相似文献   

8.
通过对电火花加工过程中间隙电压和放电状态的分析,提出了采用间隙电压作为微观驱动控制,同时利用表征放电状态的参数,即火花放电率、电弧及短路率等进行宏观调节的一种综合控制策略。其中微观模糊控制器调节进给频率,宏观模糊控制器调节进给步距。  相似文献   

9.
The paper presents a simple approach for optimizing high-speed electrical-discharge machining (EDM). The approach begins with designing the ideal function of an EDM system coupled with Taguchi methods for process optimization. It has been proposed that the ideal function has a linear relationship between the input signal (intended dimension) and the output response (product dimension). This model seeks to develop a robust machining process enabling high precision and accuracy of machining a product.In this study, a two-step optimization strategy has been applied. The first step is to reduce the functional variability of the EDM system to enhance process robustness. The second step is to increase the machining accuracy by adjusting the slope of the best-fit line between the input signals and the output responses. Experimental results have shown that the use of the proposed model is simple, effective, and efficient in the development of robust and high-quality EDM machining processes.  相似文献   

10.
为解决油泵油嘴复杂微结构加工难题,开展了微细电火花铣削加工试验研究。在改进微细电火花加工机床系统的基础上,介绍了微细电火花铣削加工试验过程,并着重分析电极损耗补偿问题、加工效率问题的解决方法,进而完成油泵油嘴复杂微结构的精密微细电火花加工,总结出保证微细电火花铣削加工质量和加工效率的工艺规律。  相似文献   

11.
During electrical discharge machining (EDM), ablated workpiece material is rapidly solidified upon ejection into the dielectric and thought not to become reattached to the electrode surfaces. This work furthers the understanding of the little understood discharge gap phenomena by investigating the attachment of machined material back onto the tool electrode surface and explains the mechanism of this attachment. After the machining of high-aspect ratio slots, SEM and EDS techniques along with single discharge and cross-sectional analysis were used to explain that debris reattachment onto the tool electrode does not occur randomly but is dependent on its remelting in the dielectric by the secondary discharge process. The subsequently bonded material is present mainly in the centre of the discharge crater, with no attachment occurring outside of discharge affected regions. The surfaces of electrodes subject to intense secondary sparking are therefore liable to transient surface properties dependent on the composition of the deposited material. It is also observed that the deposited material on the tool electrode can offer a protective effect against wear from further secondary discharges and so potentially enhancing tool life.  相似文献   

12.
Development and evaluation of an on-machine optical measurement device   总被引:4,自引:0,他引:4  
Demand for fabricating micro-features such as fine holes, micro-cavity for injection moulding, and micro-pin using both conventional (turning, milling, etc.) and non-conventional edge detection method (EDM), wire cut EDM, etc.) processes is increasing significantly. To successfully achieve micro-machining, development of a miniature machine tool, process technology, and on-machine measurement is essential. However, in such tool-based micro-machining processes, proper tool shape monitoring, precision processing, and dimensional control require significant attention. Since these are tool-based machining processes, tool shape monitoring and control are also important technologies to be established.In this study, an on-machine measuring device was developed based on non-contact optical method to inspect dimensions of the fabricated tools (e.g. electrodes for EDM) as well as the wear of tools used for the respective processes. The developed inspection system uses a laser light source and a photo-electronic device. To minimize errors due to the change of tool measurement position and the Fresnel diffraction of laser light, an edge detection algorithm using a linear discrimination function is proposed in this study. Furthermore, an intensity measuring method was added for specimen with a smaller diameter. The experimental results show that the developed on-machine optical inspection system has the accuracy and stability to effectively monitor the fine dimensions of tools and their wear.  相似文献   

13.
14.
A study of EDM and ECM/ECM-lapping complex machining technology   总被引:1,自引:0,他引:1  
EDM (electrodischarge machining) and ECM (electrochemical machining)/ECM-lapping complex machining is investigated in this paper. First, EDM shaping and ECM finishing technology are investigated. These processes are carried out in sequence on the same machine tool with the same electrode (copper) and the same machining liquid (water). Two types of EDM and ECM complex machining are investigated. One is with a formed electrode, and the other is with simple-shape electrode scanning. The complex machining with electrode scanning is applied to produce small and various-shaped components without making a formed electrode. The EDM surface of 1 μm Ra is improved to 0.2 μm Ra by applying ECM. Second, in order to get a smoother surface, a new EDM and ECM-lapping complex machining technology is developed. The surface roughness of a machined hole is improved to 0.07 μm Ra by applying 2 min of ECM lapping. The surface finishing of a hole shape is demonstrated with the complex machining technology.  相似文献   

15.
An anodic tool polarity is generally adopted in sink electrical discharge machining (EDM) to maximize material removal relative to tool wear. Sink EDM of Ti and Ti6Al4V is however atypical in that these materials necessitate a cathodic tool polarity. Adding to the intrigue is γ-TiAl, which machines better under the conventional anodic polarity. This research focused on clarifying the phenomena behind this interesting behavior by investigating removal mechanisms over a range of relevant process conditions. The anomaly is demonstrated to arise from the polarity-dependent nature and extent of TiC formation on the work surface, which significantly affects material removal.  相似文献   

16.
The electrical discharge machining (EDM) process is, by far, the most popular amongst the non-conventional machining processes. The technology is optimum for accurate machining of complex geometries in hard materials, as those required in the tooling industry. However, although a large number of EDM machines are sold every year, scientific knowledge of the process is still limited. The complex nature of the process involves simultaneous interaction of thermal, mechanical, chemical and electrical phenomena, which makes process modelling very difficult. In this paper a new contribution to the simulation and modelling of the EDM process is presented. Temperature fields within the workpiece generated by the superposition of multiple discharges, as it happens during an actual EDM operation, are numerically calculated using a finite difference schema. The characteristics of the discharge for a given operation, namely energy transferred onto the workpiece, diameter of the discharge channel and material removal efficiency can be estimated using inverse identification from the results of the numerical model. The model has been validated through industrial EDM tests, showing that it can efficiently predict material removal rate and surface roughness with errors below 6%.  相似文献   

17.
Particle Reinforced Metal Matrix Composites (PRMMC's) have proved to be extremely difficult to machine using conventional manufacturing processes due to heavy tool wear caused by the presence of the hard reinforcement. This paper presents details and results of an investigation into the machinability of SiC particle reinforced aluminium matrix composites using non-conventional machining processes such as Electro Discharge Machining (EDM), laser cutting and Abrasive Water Jet (AWJ). The surface integrity of the composite material for these different machining processes are examined and compared. The influence of the ceramic particle reinforcement on the machining process was analysed by tests performed on samples of the non-reinforced matrix material.  相似文献   

18.
形状记忆合金非常规加工综述(英文)   总被引:1,自引:0,他引:1  
形状记忆合金(SMAs)由于具有多种特殊性能,如伪弹性、形状记忆效应、生物相容性、高的比强度、高耐蚀性、高耐磨性、良好的抗疲劳性能,成为不断发展的先进材料。因此,形状记忆合金被广泛应用于航空航天、医疗和汽车等方面。然而,由于严重的加工硬化和伪弹性,形状记忆合金的传统加工会造成严重的刀具磨损、费时以及低维畸变。这些材料可以使用非传统的方法,如激光加工、水射流加工(WJM)和电化学加工(ECM)进行机械加工,但这些方法受限于该材料的复杂性和力学性能。而电火花加工(EDM)和线切割(WEDM)能够很好的加工具有复杂形状和精密尺寸的形状记忆合金。介绍大量关于使用电火花和线切割加工形状记忆合金的研究,分析不同研究的差异,并展望未来的研究趋势。  相似文献   

19.
In recant years, surface modification of metals and machining of insulating ceramics by electrical discharge machining (EDM) have been successfully carried out. In surface modification by EDM with semi-sintered electrodes, worn substances in the gap region form the material source of the layer generated on the work-piece surface. In the machining of insulating ceramics by EDM, a crystallized carbon layer or carbide layer from the working oil covers the surface of the insulator. Increase in the thickness of the generated layer, however, tends to stop at a certain maximum value in both surface modification by EDM with semi-sintered electrodes and machining of insulating ceramics by EDM processes. In these machining operations, accretion and removal phenomena occur alternately. In this paper, the mechanisms of machining insulators and the accretion process are discussed considering the characteristics of the generated layers on the work-piece surface.  相似文献   

20.
Micro EDM is one of the most powerful technologies which are capable of fabricating micro-structure. However, there are many operating parameters that affect the micro EDM process. Since the EDM is basically a thermal process, the supplying electrical condition can be an important factor. The conditions generally consist of several parameters such as electrical current, voltage, pulse duration, spark gap, and others. Those are decisive in removal rate, wear rate, and machining accuracy, which are characteristics of EDM. In this study, the influences of EDM pulse condition on the micro EDM properties were investigated. Voltage, current, and on/off time of the pulse were selected as experimental parameters based on a simple equation for the material removal rate. The pulse condition is particularly focused on the pulse duration and the ratio of off-time to on-time, and the machining properties are reported on tool wear, material removal rate, and machining accuracy. The experimental results show that the voltage and current of the pulse exert strongly to the machining properties and the shorter EDM pulse is more efficient to make a precision part with a higher material removal rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号