首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The paper reviews the use of metal powders dispersed in the dielectric fluid and refractory PM electrodes, to initiate workpiece surface modification during EDM. Experimental work details the effects of EDM parameters (up to 270 V) on the hardness/composition of the white layer following die sink machining of AISI H13 tool steel and roll texturing of 2% Cr steel using partially sintered PM electrodes. Similar data are presented following EDM scanning and wire cutting of standard TI alloy TI-6AI-4V and a y TIAI. With AISI H13, recast layers were 5-20 μm thick and up to ∼ 1350 HK0.025. When machining TI-6AI-4V with WC/Co electrodes, recast microhardness was 600-2900 HK0.025. Wire cutting y TIAI generated porous alloyed layers up to 115 μm thick with extensive cracks and no increase in bulk hardness.  相似文献   

2.
Following a brief introduction to titanium alloys and their machinability, the cutting performance of a gamma titanium aluminide intermetallic (γ-TiAl) alloy: Ti–45Al–8Nb–0.2C wt% and a burn resistant titanium (BuRTi) alloy: Ti–25V–15Cr–2Al–0.2C wt%, is compared with creep feed grinding using SiC abrasive. The work utilised 2 separate L9 Taguchi fractional factorial arrays. Typically G-ratios were a factor of 10× greater for γ-TiAl than BuRTi, with on average 10% lower maximum power and 25% lower maximum specific energy for the γ-TiAl alloy. A combination of a moderately high wheel speed: 35 m/s, low depth of cut: 1.25 mm and low feed rate: 150 mm/min, produced the lowest average workpiece surface roughness (Ra1.4 μm). Workpiece surface integrity evaluation indicated that with lower operating parameter levels, in particular a wheel speed of 15 m/s, surfaces free of burn and cracks could be produced, while at higher wheel speeds: 35 m/s, extensive workpiece surface burn was evident, with the γ-TiAl alloy suffering extensive cracking. Microhardness measurements showed in some instances slightly increased workpiece surface hardness of around 50–60HK0.025 for the BuRTi alloy and 200HK0.025 for the γ-TiAl material over respective bulk hardness values of 375HK0.025 and 400HK0.025.  相似文献   

3.
TC4钛合金混粉电火花表面改性研究   总被引:2,自引:2,他引:0  
赵林  李丽  王好臣  刘云  林本刚 《表面技术》2017,46(2):138-143
目的通过混粉电火花加工方法,分别使用紫铜和石墨作为工具电极,获得综合性能较好的TC4钛合金表面。方法利用手持式TR200粗糙度仪对工件表面的粗糙度进行测量,用扫描电子显微镜(SEM)、X射线衍射仪对工件组织形貌和物相结构进行分析,用FM800型显微硬度计对工件表面进行显微硬度测量。结果在相同电参数下,紫铜电极加工的工件较石墨电极加工的工件表面粗糙度要低,硬度也相对低。当I=4.5A、tON=30?s时,紫铜电极加工的工件表面平均粗糙度值Ra=2.223?m,表面硬度约为600HV;石墨电极加工的工件表面平均粗糙度值Ra=2.796?m,表面硬度约为700HV。当I=9 A、tON=30?s时,紫铜电极加工的工件表面平均粗糙度值Ra=2.748?m,表面硬度约为650HV;石墨电极加工的工件表面平均粗糙度值Ra=3.705?m,表面硬度约为750HV。结论在不同电极条件下混粉电火花加工后,TC4钛合金工件表面都达到了强化的效果。  相似文献   

4.
Electrode materials for electrical discharge machining (EDM) are usually graphite, copper and copper alloys because these materials have high melting temperature, and excellent electrical and thermal conductivity. The electrodes made by using powder metallurgy technology from special powders have been used to modify EDM surfaces in recent years, to improve wear and corrosion resistance. However, electrodes are normally fabricated at high temperatures and pressures, such that fabrication is expensive. This paper proposes a new method of blending the copper powders contained resin with chromium powders to form tool electrodes. Such electrodes are made at low pressure (20 MPa) and temperature (200 °C) in a hot mounting machine. The results showed that using such electrodes facilitated the formation of a modified surface layer on the work piece after EDM, with remarkable corrosion resistant properties. The optimal mixing ratio, appropriate pressure, and proper machining parameters (such as polarity, peak current, and pulse duration) were used to investigate the effect of the material removal rate (MRR), electrode wear rate (EWR), surface roughness, and thickness of the recast layer on the usability of these electrodes. According to the experimental results, a mixing ratio of Cu–0wt%Cr and a sinter pressure of 20 MPa obtained an excellent MRR. Moreover, this work also reveals that the composite electrodes obtained a higher MRR than Cu metal electrodes; the recast layer was thinner and fewer cracks were present on the machined surface. Furthermore, the Cr elements in the composite electrode migrated to the work piece, resulting in good corrosion resistance of the machined surface after EDM.  相似文献   

5.
超声振动辅助气中放电加工技术避免了常用的煤油等工作液作为介质带来的环境污染问题,具有工作环境清洁、适用范围广、加工效率高、工具电极简单等优点。实验研究了电压、脉冲宽度、峰值电流、超声振幅及气体介质压力等参数对加工效率、工件表面粗糙度及电极损耗的影响.并对试验结果进行了分析。  相似文献   

6.
During electrical discharge machining (EDM), ablated workpiece material is rapidly solidified upon ejection into the dielectric and thought not to become reattached to the electrode surfaces. This work furthers the understanding of the little understood discharge gap phenomena by investigating the attachment of machined material back onto the tool electrode surface and explains the mechanism of this attachment. After the machining of high-aspect ratio slots, SEM and EDS techniques along with single discharge and cross-sectional analysis were used to explain that debris reattachment onto the tool electrode does not occur randomly but is dependent on its remelting in the dielectric by the secondary discharge process. The subsequently bonded material is present mainly in the centre of the discharge crater, with no attachment occurring outside of discharge affected regions. The surfaces of electrodes subject to intense secondary sparking are therefore liable to transient surface properties dependent on the composition of the deposited material. It is also observed that the deposited material on the tool electrode can offer a protective effect against wear from further secondary discharges and so potentially enhancing tool life.  相似文献   

7.
Solutions are needed for increasing the material removal rate without degrading surface quality in micro-electrical discharge machining (μ-EDM). This paper presents a new method that consists of suspending micro-MoS2 powder in dielectric fluid and using ultrasonic vibration during μ-EDM processes. The Taguchi method is adopted to ascertain the optimal process parameters to increase the material removal rate of dielectric fluid containing micro-powder in μ-EDM using a L18 orthogonal array. Pareto analysis of variance is employed to analyze the four machining process parameters: ultrasonic vibration of the dielectric fluid, concentration of micro-powder, tool electrode materials, and workpiece materials. The results show that the introduction of MoS2 micro-powder in dielectric fluid and using ultrasonic vibration significantly increase the material removal rate and improves surface quality by providing a flat surface free of black carbon spots.  相似文献   

8.
针对电火花加工中多材质电极的损耗和形状变化,在模具钢工件上开展了电火花多材质电极加工实验研究,分析了电极材料、加工极性对多材质电极损耗的影响规律,并以黄铜-模具钢电极、紫铜-铜钨合金电极为研究对象,分析了多材质电极的形状变化规律。结果表明:长度损耗小的电极材料能辅助减小同组其他材料的电极损耗,但通常其角损耗较大;加工中多材质电极结合处形成过渡曲面,当加工进入均匀损耗阶段后,过渡曲面的圆弧半径和圆心角基本恒定不变。  相似文献   

9.
Electrical discharge machining (EDM) process is widely used to process hard materials in the industry. Electrical discharge distribution effects can be achieved by the addition of Al powder in the dielectric. A fine surface roughness value of the workpiece is thus obtained. However, the electrostatic force among fine Al particles is found to agglomerate the Al powders in the dielectric. A surfactant can be adopted to separate the Al powder in the dielectric homogenously. A better surface even the mirror-like quality of the EDMed workpiece is thus desired. In the study, the effect of surfactant and Al powders added in the dielectric on the surface status of the workpiece after EDM is investigated.It is observed the best distribution effect is found when the concentrations of the Al powder and surfactant in the dielectric are 0.1 and 0.25 g/L, respectively. An optimal surface roughness (Ra) value of 0.172 μm is achieved under the following parameter—positive polarity, discharge current 0.3 A, pulse duration time 1.5 μs, open circuit potential 140 V, gap voltage 90 V and surfactant concentration 0.25 g/L.The surface roughness status of the workpiece has been improved up to 60% as compared to that EDMed under pure dielectric with high surface roughness Ra of 0.434 μm.  相似文献   

10.
Dry electrical discharge machining is one of the novel EDM variants, which uses gas as dielectric fluid. Experimental characterization of material removal in dry electrical discharge drilling technique is presented in this paper. It is based on six-factor, three-level experiment using L27 orthogonal array. All the experiments were performed in a ‘quasi-explosion’ mode by controlling pulse ‘off-time’ so as to maximize the material removal rate (MRR). Furthermore, an enclosure was provided around the electrodes with the aim to create a back pressure thereby restricting expansion of the plasma in the dry EDM process. The main response variables analyzed in this work were MRR, tool wear rate (TWR), oversize and compositional variation across the machined cross-sections. Statistical analysis of the results show that discharge current (I), gap voltage (V) and rotational speed (N) significantly influence MRR. TWR was found close to zero in most of the experiments. A predominant deposition of melted and eroded work material on the electrode surface instead of tool wear was evident. Compositional variation in the machined surface has been analyzed using EDAX; it showed migration of tool and shielding material into the work material. The study also analyzed erosion characteristics of a single-discharge in the dry EDM process vis-á-vis the conventional liquid dielectric EDM. It was observed that at low discharge energies, single-discharge in dry EDM could give larger MRR and crater radius as compared to that of the conventional liquid dielectric EDM.  相似文献   

11.
Electrical discharge machining (EDM) is used as a precision machining method for the electrically conductive hard materials with a soft electrode material. But recently we succeeded to machine on insulating material by EDM. The technology is named as an assisting electrode method. The EDMed surface is covered with the electrical conductive layer during discharge. The layer holds the electrical conductivity during discharge. For micro-EDM, the wear of tool electrode becomes lager ratio than the normal machining. So the micro-machining is extremely difficult to get the precision sample.

In this paper to obtain a fine and precise ceramics sample, some trials were carried out considering the EDM conditions, tool electrodes material and assisting electrode materials. Insulating Si3N4 ceramics were used for workpiece. The machining properties were estimated by the removal rate and tool wear ratio. To confirm the change of micro-machining process, the discharge waveforms were observed. The micro-machining of the Ø0.05 mm hole could be machined with the commercial sinking electrical discharge machine.  相似文献   


12.
A study of EDM and ECM/ECM-lapping complex machining technology   总被引:1,自引:0,他引:1  
EDM (electrodischarge machining) and ECM (electrochemical machining)/ECM-lapping complex machining is investigated in this paper. First, EDM shaping and ECM finishing technology are investigated. These processes are carried out in sequence on the same machine tool with the same electrode (copper) and the same machining liquid (water). Two types of EDM and ECM complex machining are investigated. One is with a formed electrode, and the other is with simple-shape electrode scanning. The complex machining with electrode scanning is applied to produce small and various-shaped components without making a formed electrode. The EDM surface of 1 μm Ra is improved to 0.2 μm Ra by applying ECM. Second, in order to get a smoother surface, a new EDM and ECM-lapping complex machining technology is developed. The surface roughness of a machined hole is improved to 0.07 μm Ra by applying 2 min of ECM lapping. The surface finishing of a hole shape is demonstrated with the complex machining technology.  相似文献   

13.
Technologies for machining advanced insulating ceramics are demanded in many industrial fields. Recently, several insulating ceramics, such as Si3N4, SiC and ZrO2, have been successfully machined by electrical discharge machining (EDM). As unstable discharges occur during the machining of Al2O3 ceramics, inferior machining properties have been obtained. The formation mechanism of the electrical conductive layer on the EDMed surface is much different as compared to other ceramics. In addition to this, the electrically conductive layers are not formed sufficiently to adhere to the EDMed workpiece surface and keep a stable and continuous discharge generation on the ceramics. Graphite is widely used as electrode material in EDM. It is expected that carbon from graphite electrode implant and generate a conductive layer. Copper, graphite (Poco EDM-3) and copper-infiltrated-graphite (Poco EDM-C3) electrodes were used to compare the effects of generation of a conductive layer on alumina corresponding to EDM properties. The electrical discharge machining of 95% pure alumina shows that the EDM-C3 performs very well, giving significantly higher material removal rate (MRR) and lower electrode wear ratio than the EDM-3 and copper electrodes. The value of MRR was found to increase by 60% for EDM-3 with positive electrode polarity. As for EDM-C3, MRR was increased by 80% under the same condition. When the results were investigated with energy dispersive spectroscopy (EDS), no element of copper was observed on the conductive layer with both EDM-3 and EDM-C3. However, surface resistivity of a conductive layer created with EDM-C3 is less than with EDM-3. Surface roughness was improved to 25 μm with positive polarity of EDM-C3.  相似文献   

14.
Tool path generation for 4-axis contour EDM rough machining   总被引:1,自引:0,他引:1  
Contour or CNC EDM machining of free-form surfaces requires tool paths that are different from those used in mechanical milling although in geometry both processes are described by the similar model of intersection between the rotating tool and the workpiece. In this paper, special requirements on tool paths demanded by contour EDM machining are studied and a two-phase tool path generation method for 4-axis contour EDM rough milling with a cylindrical electrode is developed. In the first phase of the method, initial tool paths for virtual 3-axis milling are generated in a commercial CAD/CAM system—Unigraphics, which provides users with plenty of options in choosing suitable tool path patterns. From these tool paths, cutter contact (CC) points between electrode and workpiece are reversely calculated. In the second phase, considering the special requirements of EDM machining, which include discharging gap compensation, electrode wear compensation, DC arcing prevention, etc., the electrode is adjusted to an optimized interference-free orientation by rotating it around the CC points obtained in the previous phase. This new orientation together with the reference point of electrode is output as new tool path. The whole algorithm has been integrated into Unigraphics, machining simulations and tests have been conducted for 4-axis contour EDM rough machining.  相似文献   

15.
Micro electrochemical machining (ECM) of tungsten carbide with cobalt binder (WC–Co) was studied using ultrashort pulses. In ECM, the machining characteristics were investigated according to machining conditions such as electrolyte, workpiece potential, and applied voltage pulse. Using a mixture of sulfuric acid and nitric acid, microstructures with a sharp edge and good surface quality were machined on tungsten carbide alloy. The potentials of workpiece electrode and tool electrode were determined by considering the machining rate, machining stability, and surface quality of products. With the negative potential of the workpiece electrode, oxide formation was successfully prevented and shape with good surface quality in the range from Ra 0.069 μm to 0.075 μm were obtained by electrochemical machining. Moreover, the performance of ECM, which includes machining gap, tapering, surface roughness, and machining time, without tool wear was compared with that of electrical discharge machining (EDM). Microstructures of WC–Co with a sharp edge and good surface quality were obtained by electrochemical milling and electrochemical drilling. Micro electrochemical turning was also introduced to fabricate micro shafts.  相似文献   

16.
Abstract

The effects of alternating current (ac) and direct current (dc) on cooling rate, solute distribution and nugget shape after solidification, which are responsible for microstructure of the fusion zone, during resistance spot welding, are realistically and extensively investigated. The computer program developed by Wang and Wei is used to predict transport variables in workpieces and electrodes during heating, melting, cooling and freezing periods. The model accounts for electromagnetic force, heat generations at the electrode/workpiece interface and faying surface between workpieces, and dynamic electrical resistance including bulk resistance and contact resistances at the faying surface and electrode/workpiece interfaces, which are functions of hardness, temperature, electrode force and surface condition. The computed results show that in contrast to dc, using ac readily produces the nugget in an ellipse shape. Deficit and excess of solute content occur in a thin layer around the boundary and interior of the nugget respectively.  相似文献   

17.
Dry electric discharge machining (EDM) is an environment-friendly modification of the oil EDM process in which liquid dielectric is replaced by a gaseous medium. In the current work, parametric analysis of the process has been performed with tubular copper tool electrode and mild steel workpiece. Experiments have been conducted using air as the dielectric medium to study the effect of gap voltage, discharge current, pulse-on time, duty factor, air pressure and spindle speed on material removal rate (MRR), surface roughness (Ra) and tool wear rate (TWR). First, a set of exploratory experiments has been performed to identify the optimum tool design and to select input parameters and their levels for later stage experiments. Empirical models for MRR, Ra and TWR have then been developed by performing a designed experiment based on the central composite design of experiments. Response surface analysis has been done using the developed models. Analysis of variance (ANOVA) tests were performed to identify the significant parameters. Current, duty factor, air pressure and spindle speed were found to have significant effects on MRR and Ra. However, TWR was found to be very small and independent of the input parameters.  相似文献   

18.
This study investigates the feasibility and optimization of a rotary EDM with ball burnishing for inspecting the machinability of Al2O3/6061Al composite using the Taguchi method. Three ZrO2 balls attached as additional components behind the electrode tool offer immediate burnishing following EDM. Three observed values (machining rate, surface roughness and improvement of surface roughness) are adopted to verify the optimization of the machining technique. In addition, six independent parameters are chosen as variables for evaluating the Taguchi method; these variables are categorized into two groups: (1) electrical parameters, i.e. peak current, pulse duration and non-load voltage; and (2) non-electrical parameters, i.e. flushing pressure of dielectric, rotational speed of electrode and residual height of hump. Experimental results indicated a feasible technique for applying rotary EDM with ball burnishing in machining the Al2O3/6061 composite. Optimization of this technique is also discussed.  相似文献   

19.
In recent years, tungsten carbide (WC) and its composites (WC–Co) are widely used in the die and mold industries due to their unique combination of hardness, strength and wear resistance. Micro-EDM is one of the most effective methods for machining these extremely difficult-to-cut materials. However, numerous applications of WC often involve intense mechanical demands at the surface. Therefore, fine-finish micro-EDM of WC is becoming an imminent and important issue. In this study, investigations have been conducted with view of obtaining fine surface finish in the micro-EDM of WC using tungsten (W), copper tungsten (CuW) and silver tungsten (AgW) electrodes. It was found that the surface characteristics are dependent mostly on the discharge energy during machining. The fine-finish micro-EDM requires minimization of the pulse energy supplied into the gap. In addition, the surface finish was found to be influenced greatly by the electrical and thermal properties of the electrode material. The performance of the electrodes for the finishing micro-EDM was evaluated based on the achieved surface roughness and surface characteristics with respect to material removal rate (MRR) and electrode wear ratio (EWR). It was found that AgW electrode produces smoother and defect-free nanosurface with the lowest Ra and Rmax among the three electrodes. Besides, a minimum amount of material migrates from the AgW electrode to the WC workpiece during the finishing micro-EDM. On the other hand, CuW electrodes achieved the highest MRR followed by AgW. In the case of electrode wear, the W electrode has the lowest wear followed by CuW and AgW. Finally, considering all the performance parameters, AgW appears to be the best choice for finish die-sinking micro-EDM of WC.  相似文献   

20.
利用TiC半烧结体电极进行电火花表面处理的实验研究   总被引:2,自引:1,他引:1  
研究了一种在普通电火花加工机床上实现金属工件表面处理的新方法。它使用传统电火花加工方法,通过特制的半烧结体电极在加工过程中使工件表面迅速形成一层硬质碳化物陶瓷,从而达到改善工件表面性能的目的。对这种方法的原理进行了初步的探讨,并在大量实验的基础上,通过厚度测量、表面粗糙度测量、X射线衍射分析等一列实验手段,对沉积层的生成特性进行了详细的分析。实验与分析表明,用电火花加工的方法进行金属表面沉积陶瓷层技术是一种极具潜力的表面改性方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号