首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Co-Cu alloys were prepared by mechanical alloying using different reaction mixtures (mechanical mixture of Co and Cu powders, composite powders (Co(100 ? y)P(y))100 ? x /Cu x with a crystalline core, and composite powders (Co(100 ? y)P(y))100 ? x /Cu x with an amorphous core). The use of a complex of structural and magnetostructural methods showed that these alloys are nonuniform nanocomposite materials consisting of two phases, namely, copper- and cobalt-based solid solutions. During the mechanical alloying of the composite powders, parameters that are sensitive to the short-range-order structure of both phases were found to be changed, namely, the lattice parameter in the Cu-based solid solution as determined from X-ray diffraction patterns, and the Bloch constant that is sensitive to the short-range order in the Co-based solid solution change. In the alloys prepared by mechanical alloying of composite powders with an amorphous core, the lattice parameter a and the Bloch constant B reach values corresponding to metastable Co100 ? x Cu x solid solutions in milling times of 1.5–2.0 h. These times are lower by 1–2 orders of magnitude than the typical times that are necessary for forming metastable Co-Cu solid solutions by standard methods of mechanical alloying from mixtures of powders.  相似文献   

2.
In this work, the microstructure and mechanical properties of rapidly solidified Ti50?x/2Ni50?x/2Hf x (x = 0, 2, 4, 6, 8, 10, and 12 at.%) and Ti50?y/2Ni50?y/2Si y (y = 1, 2, 3, 5, 7, and 10 at.%) shape memory alloys (SMAs) were investigated. The sequence of the phase formation and transformations in dependence on the chemical composition is established. Rapidly solidified Ti-Ni-Hf or Ti-Ni-Si SMAs are found to show relatively high yield strength and large ductility for specific Hf or Si concentrations, which is due to the gradual disappearance of the phase transformation from austenite to twinned martensite and the predominance of the phase transformation from twinned martensite to detwinned martensite during deformation as well as to the refinement of dendrites and the precipitation of brittle intermetallic compounds.  相似文献   

3.
Fe-Ni-based metal amorphous nanocomposites with a range of compositions (Fe100?x Ni x )80Nb4Si2B14 (30 ≤ x ≤ 70) are investigated for motor and transformer applications, where it is beneficial to have tunable permeability. It is shown that strain annealing offers an effective method for tuning permeability in these alloys. For an Fe-rich alloy, permeability increased from 4000 to 16,000 with a positive magnetostriction. In a Ni-rich alloy, permeability decreased from 290 to 40 with a negative magnetostriction. Significant elongations (above 60%) are observed during strain annealing at high stress. Crystallization products have been determined in all alloys heated to 480°C. γ-FeNi is formed in all alloys, while (Fe30Ni70)80Nb4Si2B14 also undergoes secondary crystallization at temperatures of approximately 480°C to form a phase with the Cr23C6-type structure and a likely composition of Fe21Nb2B6. Toroidal losses have been measured for (Fe70Ni30)80Nb4Si y B16?y (0 ≤ y ≤ 3) at various annealing temperatures. At an induction of 1 T and frequency of 400 Hz and 1 kHz, the toroidal losses obtained are W1.0T, 400 Hz = 0.9 W/kg and W1.0T, 1 kHz = 2.3 W/kg, respectively. These losses are lower than losses recently reported for state of the art 3.0% and 6.5% silicon steels, a Metglas Fe-based amorphous alloy, and some Fe-based nanocomposites.  相似文献   

4.
Mössbauer spectroscopy and X-ray diffraction are used to show that the phase transformations in hematite α-Fe2O3-metal (M = Fe, Ni, Ti, Zr) powder mixtures induced by severe cold plastic deformation in ball mills occur via the formation of M-Fe-O solid solutions, redox reactions with the reduction of metallic iron, and the formation of secondary M x O y oxides and M x Fe y intermetallics. Mechanical activation in a ball mill is compared to that under high-pressure shear in Bridgman anvils. The transformations that take place in a ball mill are found to have several stages and to be accelerated.  相似文献   

5.
Using X-ray, Mössbauer, and magnetic measurements, the formation of phases has been investigated upon mechanosynthesis in a ball planetary mill and upon the subsequent annealing of samples of the cementite composition (Fe0.95–уСr0.05Ni y )75C25, where у = 0–0.20, which contains two alloying elements (chromium and nickel). It has been shown that, in the mechanosynthesis process, cementite alloyed with chromium and a small amount of nickel and an amorphous phase alloyed with chromium and nickel have been formed. Upon heating above 300°С, the amorphous phase is crystallized into nickel-enriched cementite. In the process of annealing at higher temperatures, the most nickel-rich cementite decomposes with the formation of austenite. As a consequence, after annealing at medium temperatures, the composition of the alloys contains cementite alloyed mainly with chromium and some amount of alloyed austenite, which can be found in ferromagnetic or paramagnetic states depending on the Ni content. Annealing at 800°С bring about the complete or partial decomposition of cementite contained in the alloys. The intensity of the decomposition has been determined by the nickel content in the samples.  相似文献   

6.
The results of investigation of the influence of additions of 2 and 3 at.% of Sn and simultaneously of Sn and 3 at.% Nb on microstructure and properties of the bulk metallic glasses of composition (Ti40Cu36?x Zr10Pd14Sn x )100?y Nb y are reported. It was found that the additions of Sn increased the temperatures of glass transition (T g), primary crystallization (T x ), melting, and liquidus as well as supercooled liquid range (ΔT) and glass forming ability (GFA). The nanohardness and elastic modulus decreased in alloys with 2 and 3 at.% Sn additions, revealing similar values. The 3 at.% Nb addition to the Sn-containing amorphous phase decreased as well all the T g, T x , T L, and T m temperatures as ΔT and GFA; however, relatively larger values of this parameters in alloys containing larger Sn content were preserved. In difference to the previously published results, in the case of the amorphous alloys containing small Nb and Sn additions, a noticeable amount of the quenched-in crystalline phases was not confirmed, at least of the micrometric sizes. In the case of the alloys containing Sn or both Sn and Nb, two slightly different amorphous phase compositions were detected, suggesting separation in the liquid phase. Phase composition of the alloys determined after amorphous phase crystallization was similar for all compositions. The phases Cu8Zr3, CuTiZr, and Pd3Zr were mainly identified in the proportions dependent on the alloy compositions.  相似文献   

7.
High-power (Nd, Dy)–(Fe, Co)–B permanent magnets with a low temperature coefficient of induction (α) were prepared using advantages of strip casting and low-oxygen technologies. The microstructure and temperature dependences of magnetic properties have been studied on sintered (Nd1 – x Dy x )13.9(Fe1 – y Co y )79.8Cu0.1Ga0.1B6.1 magnets with 0.20 ≤ x ≤ 0.25 and 0 ≤ y ≤ 0.20. The increase in y from 0 to 0.20 is accompanied by an increase in the Curie temperature from 327 to 492°C. This favors a decrease in the value of α from 0.099 to 0.060%/°C, respectively. Magnets with an oxygen content of no more than 2500 ppm which were prepared from the (Nd0.75Dy0.25)13.9(Fe0.85Co0.15)79.8Cu0.1 Ga0.1B6.1 alloy, have the following hysteresis characteristics at 140°C: B r ≥ 11.3 kG, H c ≥ 8 kOe, and (BH)max ≥ 30 MGOe; in this case, α ≤ |–0.07%/°С|.  相似文献   

8.
The effects of the introduction of Ce to La1?x Ce x Fe11.5Si1.5 alloys on 1:13 phase formation mechanism, the first-order magnetic phase transition strengthening characteristics, and magnetocaloric property were studied, respectively. The results show that the formation mechanisms of 1:13 and LaFeSi phases in La1?x Ce x Fe11.5Si1.5 alloys are the same as those of Ce2Fe17 and CeFe2 phases in Ce–Fe binary system, respectively. The substitution of Ce in 1:13 phase which is limited can make the first-order magnetic phase transition characteristics strengthen, which can make thermal and magnetic hysteresis increase, the temperature interval of temperature-induced phase transition decrease, and the critical magnetic field of field-induced magnetic phase transition (H C) increase, respectively. Owing to the lattice shrink of 1:13 phase with the increase in Ce content, the Curie temperatures (T C) show a linear decrease. The maximum change in magnetic entropy gradually increases due to the decrease in temperature interval of temperature-induced phase transition, but the relative cooling capacities are all about 80 J·kg?1 at magnetic field of 2 T.  相似文献   

9.
Structural features of the NANOPERM-type alloys Fe91 ? x Mo8Cu1B x with x = 12, 15, and 17 have been investigated by Mössbauer spectroscopy. The room-temperature Mössbauer spectra of the as-quenched alloys are characteristic of disordered structural arrangement, but traces of bcc-Fe(Mo) as well as a FeMo2B2 phase have been revealed by X-ray diffraction in all the samples. These results have been confirmed by conversion-electron Mössbauer spectroscopy. The differences between the opposite sides of the ribbon-shaped samples have been shown to stem from structural distinctions. From the point of view of hyperfine interactions, the x = 12 sample exhibits paramagnetic behavior. With increasing x, a contribution from ferromagnetic regions appears gradually, thus leading to an increase in the magnetic ordering temperature in the as-quenched state. Partially crystallized samples have been prepared by controlled annealing of the original precursors for one hour at temperatures ranging from 330 to 650°C in a vacuum. The temperature of the onset of crystallization has been determined to be of 430, 450, and 470°C for x = 12, 15, and 17, respectively. During the first step of crystallization, bcc-Fe(Mo) nanosized grains are formed. Surface features of the samples investigated have also been characterized by using atomic force microscopy.  相似文献   

10.
The methods of X-ray diffraction analysis, Mögsbauer spectroscopy, and measurement of dynamic magnetic susceptibility have been used to study stationary phase states that develop at the later stages of mechanical alloying in a planetary ball mill. In the Fe(100 ? x)C(x), Fe(75)C(25 ? x)Si(x), and Fe(75 ? x)C(25)Si(x) (x ≤ 25) systems, the processes of phase formation are determined by the dynamic equilibrium between the crystalline and amorphous phases. Depending on the composition of the alloys, the conditions of this equilibrium are changed, which is reflected in the sets of the crystalline phases that are formed.  相似文献   

11.
The structure and magnetic and magnetocaloric properties of new nonstoichiometric TbCo2Ni x compounds (0 ≤ x ≤ 0.4) have been studied. The alloys with х ≤ 0.1 have been shown to be single-phase with the MgCu2-type structure; in alloys with х > 0.1, an additional phase with a PuNi3-type structure has been formed. It has been found that the concentration dependences of the Curie temperature and magnetic moment of the 3d-metal sublattice have a maximum at x = 0.025. The magnetocaloric effect magnitude for the TbCo2Nix compounds has been estimated using the results of magnetic and heat-capacity measurements.  相似文献   

12.
A tailor-made thermodynamic database of the Fe-Mn-Al-C system was developed using the CALPHAD approach. The database enables predicting phase equilibria and thereby assessing the resulting microstructures of Fe-Mn-Al-C alloys. Available information on the martensite start (Ms) temperature was reviewed. By employing the Ms property model in the Thermo-Calc software together with the new thermodynamic database and experimental Ms temperatures, a set of model parameters for the Fe-Mn-Al-C system in the Ms model was optimised. Employing the newly evaluated parameters, the calculated Ms temperatures of the alloys in the Fe-Mn-Al-C system were compared with the available measured Ms temperatures. Predictions of Ms temperatures were performed for the alloys, Fe-10, 15 and 20 wt.% Mn-xAl-yC. The predictability of the Ms model can be further validated when new experimental Ms temperatures of the Fe-Mn-Al-C system are available.  相似文献   

13.
CdS x Te1?x and CdS1?y Te y solid solutions are usually formed in the interfacial region in CdS/CdTe solar cells during the deposition of the CdTe layer and/or the processing steps of the device. In this work, indium-doped CdS1?y Te y thin films were prepared by first producing CdS:In thin films by the spray pyrolysis technique on glass substrates, then annealing the films in nitrogen atmosphere in the presence of elemental tellurium. The films were characterized by scanning electron microscopy, energy dispersive x-ray spectroscopy, and transmittance measurements. The transmittance was used to deduce the reflectance from which the optical parameters were computed. The extinction coefficient, refractive index, the real and imaginary parts of the dielectric constant, optical conductivity, and energy loss were computed, and their dependence on the composition was investigated. In addition, the dispersion of the refractive index was analyzed by the single oscillator model, and dispersion parameters were investigated.  相似文献   

14.
A series of new Mg-8Li-xCa-yGd (x = 0, 1, 2; y = 0, 2; wt.%) alloys were prepared, and the microstructure and mechanical properties were investigated. The mechanical properties were characterized by tensile, compression and bending tests at room temperature. The results show that Mg-8Li-1Ca alloy is composed of alpha(Mg), beta(Li) and CaMg2 phases. In addition to the same phases in Mg-8Li-1Ca, there also exists CaLi2 phase in Mg-8Li-2Ca. In addition to the same phases in Mg-8Li-2Ca, GdMg5 phase is also formed in Mg-8Li-1Ca-2Gd alloy due to the addition of Gd. Both Ca and Gd have refining effect in the alloys, and the refining effect of Ca is better than that of Gd. The additions of Ca and Gd can improve the tensile strength and yield strength, but decrease the elongation and the bending strength. Comparing the mechanical properties of the investigated alloys, Mg-8Li-1Ca-2Gd possesses the best mechanical properties.  相似文献   

15.
With the use of Mössbauer spectroscopy, the effect of alloying molybdenum additives on the hyperfine magnetic and electronic structure of iron alloys containing ~21 and 28% chromium is studied. Probability distribution functions of hyperfine magnetic fields P(H eff), intensities of the effective magnetic field H eff, isomer (chemical) shifts δ, second-to-third spectral line area ratios (W 23), and other spectral parameters are calculated with the use of the Normos program package. The data of Mössbauer spectroscopy are compared to the corrosion-electrochemical behavior of the alloys.  相似文献   

16.
To estimate the reliability of the literature data on the magnetic structures of quasi-binary alloys Fe x Mn1 ? x Sn2 obtained without using methods of symmetry analysis, we calculated the basic functions of the irreducible representations of the space group D 4h 18 (I4/mcm) with the stars of wave vectors determined from an analysis of previously published models of these structures. A comparison of these models with the results of calculations has been performed. A conclusion is made that the models of magnetic structures examined are in agreement with the results of the symmetry analysis performed in this work.  相似文献   

17.
Dielectric films of hydrogenated silicon oxycarbonitride SiC x N y O z :H were prepared by plasmaenhanced chemical vapor deposition using gas mixtures of 1,1,1,3,3,3-hexamethyldisilazane (HMDS) or 1,1,3,3-tetramethyldisilazane (TMDS) with oxygen and nitrogen in the temperature range of 373–973 K. The effect of the conditions of synthesis on the chemical and phase composition of the films was studied, in the amorphous part of which nanocrystals belonging to the phases of the Si–C–N system α-Si3N4, α-Si3–x C x N4, and graphite were distributed. To measure the hardness and Young’s modulus, the nanoindentation method was used. The influence that the synthesis temperature and nitrogen-to-oxygen ratio in the initial gas mixtures HMDS + O2 + xN2 and TMDS + O2 + xN2 have on the hardness and Young’s modulus of the resulting SiC x N y O z :H films was investigated. The maximum obtained values of these parameters were 20.4 and 201.5 GPa, respectively.  相似文献   

18.
Mössbauer spectroscopy study of Ce(Fe1–x Si x )2 compounds with x = 0 and 0.07 was performed at different temperatures. Easy magnetization axis of the CeFe2 ferromagnet at 130 K was shown to be in the {110} plane and to deviate from the [001] axis by ~10°. Upon cooling, the Ce(Fe0.93Si0.07)2 compound undergoes the ferromagnet–antiferromagnet phase transition in a temperature range of 120–125 K, which is accompanied by the reduction of the lattice symmetry. The Debye temperature of the Ce(Fe0.93Si0.07)2 compound was estimated using temperature dependences of the integral intensity of Mössbauer spectrum; it is T D ≈ 310 K. When analyzing the P(H) hyperfine field distributions P(H) derived from the Mössbauer spectra of Ce(Fe0.93Si0.07)2, it was found that in the cubic structure of this compound in the ferromagnetic state there occur local rhomboherdal distortions typical of the antiferromagnetic state.  相似文献   

19.
The deformation-intensified atomic Mn-related separation of the bcc solid solution has been found in Fe100–xMnx alloys (x = 4.5–9.9) subjected to ball milling using Mössbauer spectroscopy. In the near surrounding of iron atoms, the atomic separation is similar to that observed upon the annealing of the alloys in a temperature range of 400–500°С. It has been found that the deformation-intensified atomic separation leads to the stabilization of the bcc phase with regard to the α → γ transformation, as well as to the expansion of the field of the existence of the bcc phase during heating.  相似文献   

20.
The Hall resistance and the magnetoresistance in the mixed state of the Nd2 ? xCe x CuO4 + δ quasi-two-dimensional system near the antiferromagnetic-superconductor (AF-SC) phase transition have been measured at doping levels x = 0.14 and 0.15, and a correlation has been established. This correlation can be analyzed using the following power relationship: ρ xy (B) ~ [ρ xx (B)]β. It was found that index β varied from 0.94 ± 0.03 in the region of AF and SC coexistence (x = 0.14) to 0.6 ± 0.1 in the SC region with the maximum critical temperature (x = 0.15) at low temperatures and weak magnetic fields. This reduction suggests that the symmetry of carrier pairing changes at the boundary of the transition from the phase of antiferromagnetic ordering and spin density waves to the superconducting phase in the presence of antiferromagnetic spin fluctuations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号