首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
An Fe2O3 (10 wt%)/Al2O3 (90 wt%) catalyst prepared by a coprecipitation method was found to be effective for dehydrogenation of ethylbenzene to produce styrene in the presence of CO2 instead of steam used in commercial processes. The dehydrogenation of ethylbenzene over the catalyst in the presence of CO2 was considered to proceed both via a one-step pathway and via a two-step pathway. CO2 was found to suppress the deactivation of the catalyst during the dehydrogenation of ethylbenzene. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
The microwave-assisted styrene epoxidation reaction with molecular O2 as an oxidant was studied over a sulfated Co–Y-doped ZrO2 solid catalyst. The microwave irradiation (400 W) resulted in similar styrene conversion and styrene oxide selectivity, in reduced time, as compared to conventional thermal heating. Higher power (800 W) of microwave irradiation decreased the styrene oxide selectivity as well as leading to the formation of styrene glycol. DMF was found to be the most suitable solvent for epoxidation of styrene with molecular O2 under microwave irradiation and yielded maximum oxide selectivity (91%) at 120 °C. The microwave-assisted oxidation reaction resulted in time saving and is energy conserving method.  相似文献   

3.
This work investigates the improvement of Ni/Al2O3 catalyst stability by ZrO2 addition for H2 gas production from CH4/CO2 reforming reactions. The initial effect of Ni addition was followed by the effect of increasing operating temperature to 500–700 °C as well as the effect of ZrO2 loading and the promoted catalyst preparation methods by using a feed gas mixture at a CH4:CO2 ratio of 1:1.25. The experimental results showed that a high reaction temperature of 700 °C was favored by an endothermic dry reforming reaction. In this reaction the deactivation of Ni/Al2O3 was mainly due to coke deposition. This deactivation was evidently inhibited by ZrO2, as it enhances dissociation of CO2 forming oxygen intermediates near the contact between ZrO2 and nickel where the deposited coke is gasified afterwards. The texture of the catalyst or BET surface area was affected by the catalyst preparation method. The change of the catalyst texture resulted from the formation of ZrO2–Al2O3 composite and the plugging of Al2O3 pore by ZrO2. The 15% Ni/10% ZrO2/Al2O3 co-impregnated catalyst showed a higher BET surface area and catalytic activity than the sequentially impregnated catalyst whereas coke inhibition capability of the promoted catalysts prepared by either method was comparable. Further study on long-term catalyst stability should be made.  相似文献   

4.
The mixed metal oxides TiO2-Fe2O3 and ZrO2-Fe2O3 were examined as potential catalysts for the dehydrogenation reaction of ethylbenzene. The acidic and basic properties and surface area, pore volume and pore size distribution of these catalysts were measured. The catalytic activities can be correlated very well with the surface area and the acidity and basicity of ZrO2-Fe2O3 catalysts. However, for TiO2-Fe2O3 catalysts, the surface area, the amount of acidic and basic sites and TiFe2O5 crystallinity are all important factors affecting the catalytic activities for ethylbenzene dehydrogenation. A synergistic effect was found for the TiO2-Fe2O3 and ZrO2-Fe2O3 catalyst system and also for the TiO2-Fe2O3-ZrO2 system, i.e. the activities of these catalysts can be ranked in the following order: TiO2-Fe2O3-ZrO2>TiO2-Fe2O3 >ZrO2>Fe2O3>TiO2. Meanwhile, all of these catalysts showed higher activities than the conventional potassium-promoted iron catalysts.  相似文献   

5.
The stability and the activity of Fe2O3/Cr2O3 and ZnO/Cr2O3 catalysts were examined for a reverse-watergas-shift reaction (RWReaction). The initial activities of those catalysts were quite high so that the conversion reached close to equilibrium. The activity of Fe2O3/Cr2O3 catalyst decreased from 33.5 to 29.8% during the RWReaction for 75 h at 873 K with GHSV (ml/gcat · h) of 100,000. Moreover, the coke formation on the Fe2O3/Cr2O3 catalyst caused clogging in the RWReactor of the CAMERE process. On the other hand, the ZnO/Cr2O3 catalyst showed no coke formation and no deactivation for the RWReaction at 873 K with GHSV (ml/gcat · h) of 150,000. The ZnO/Cr2O3 was a good catalyst for the RWReaction of the CAMERE process.  相似文献   

6.
Direct synthesis route was developed to support TiO2–ZrO2 binary metal oxide onto the carbon templated mesoporous silicalite-1 (CS-1). Metal hydroxide modified carbon particles could play a role as hard template and simultaneously support metal components on the mesopores during the crystallization of zeolites. Such supported TiO2–ZrO2 binary metal oxides (TZ/CS-1) showed better resistance to deactivation in the oxidative dehydrogenation of ethylbenzene (ODHEB) in the presence of CO2. These catalysts were found to be active, selective and catalytically stable (10 h of time-on-stream) at 600 °C for the dehydrogenation of ethylbenzene (EB) to styrene (Sty).  相似文献   

7.
Fe2O3 or CoO modified CeO2-ZrO2 catalysts lead to four times higher yield of hydrocarbons than ZrO2 with C4 hydrocarbons selectivity of more than 50% and isobutene selectivity of more than 80%. XRD and XPS measurements suggested that the interaction of Fe or Co oxide with CeO2 causes the higher Ce3+ concentration with their higher oxidation state. Their combination with ZrO2 synergistically causes the active and selective formation of isobutene.  相似文献   

8.
The catalytic activity and selectivity of Cr2O3 supported on mesoporous SBA-15 for non-oxidative and oxidative dehydrogenation of propane by O2 and CO2 have been studied and compared with those of Cr2O3/ZrO2 and Cr2O3/-Al2O3 catalysts. Cr2O3/SBA-15 and Cr2O3/ZrO2/SBA-15 are more selective to propene and more resistant to coking in comparison with Cr2O3/ZrO2 and Cr2O3/-Al2O3 for non-oxidative dehydrogenation of propane. In oxidative dehydrogenation of propane by O2 and CO2, Cr2O3/SBA-15 also displays better activity, selectivity and stability than the other two supported catalysts. The propane conversion and propene yield on Cr2O3/SBA-15 catalyst for oxidative dehydrogenation of propane by CO2 at 823 K reach 24.2 and 20.3%, respectively. XPS and TG/DTA have been used to characterize the catalysts before and after reaction. The differences in catalytic behavior of various supported Cr2O3 catalysts in the reactions have been discussed on the basis of the characterization results.  相似文献   

9.
Rh/CeO2–ZrO2 catalysts with various CeO2/ZrO2 ratios have been applied to H2 production from ethanol steam reforming at low temperatures. The catalysts all deactivated with time on stream (TOS) at 350 °C. The addition of 0.5% K has a beneficial effect on catalyst stability, while 5% K has a negative effect on catalytic activity. The catalyst could be regenerated considerably even at ambient temperature and could recover its initial activity after regeneration above 200 °C with 1% O2. The results are most consistent with catalyst deactivation due to carbonaceous deposition on the catalyst.  相似文献   

10.
Activity and selectivity of selective CO oxidation in an H2-rich gas stream over Co3O4/CeO2/ZrO2, Ag/CeO2/ZrO2, and MnO2/CeO2/ZrO2 catalysts were studied. Effects of the metaloxide types and metaloxide molar ratios were investigated. XRD, SEM, and N2 physisorption techniques were used to characterize the catalysts. All catalysts showed mesoporous structure. The best activity was obtained from 80/10/10 Co3O4/CeO2/ZrO2 catalyst, which resulted in 90% CO conversion at 200°C and selectivity greater than 80% at 125°C. Activity of the Co3O4/CeO2/ZrO2 catalyst increased with increase in Co3O4 molar ratio.  相似文献   

11.
CH4/CO2 reforming over Pt/ZrO2, Pt/CeO2 and Pt/ZrO2 with CeO2 was investigated at 2 MPa. Pt/ZrO2, which shows stable activity under 0.1 MPa, and Pt/CeO2 showed gradual deactivation with time at the high pressure. The deactivation was suppressed drastically on Pt/ZrO2 with CeO2 prepared by different impregnation order (co-impregnation of Pt and CeO2 on ZrO2, and consecutive impregnation of Pt and CeO2 on ZrO2). The amount of coke deposition was found insignificant and similar among all the catalysts (including Pt/ZrO2 and Pt/CeO2). Catalytic activity after the reaction for 24 h was in agreement with Pt particle size after the reaction for same period, indicating that the difference of the catalytic stability is mainly dependent on the extent of Pt aggregation through catalyst preparation, H2 reduction, and the CH4/CO2 reforming. Pt aggregation and the amount of coke deposition were least pronounced on (Pt–Ce)/ZrO2 prepared by impregnation of CeO2 on Pt/ZrO2 and the catalyst showed highest stability.  相似文献   

12.
Ethylbenzene to styrene in the presence of carbon dioxide over zirconia   总被引:4,自引:0,他引:4  
ZrO2 itself was found be active for the dehydrogenation of ethylbenzene, especially in the presence of CO2, which was aimed to be utilized as an oxidant. This positive effect of CO2 was highly dependent on the crystalline phases of zirconia. The higher the tetragonal phase contained in ZrO2, the higher the ethylbenzene conversion and styrene selectivity that were obtained. Highly tetragonal ZrO2 was more active in oxidative dehydrogenation than monoclinic ZrO2. The differences of catalytic activities could be ascribed to the differences of the surface area and CO2 affinity related with surface basicity.  相似文献   

13.
Dry reforming of methane was studied over Ni catalysts supported on γAl2O3, CeO2, ZrO2 and MgAl2O4 (670 °C, 1.5 bar, 16–20 l CH4 mlcatalyst−1 h−1). It is shown that MgAl2O4 supported Ni catalysts promoted with both CeO2 and ZrO2 are promising catalysts for dry reforming of methane with carbon dioxide. Within a certain composition range, the simultaneous promotion with CeO2 and ZrO2 has great influence on the amount of coke and the catalyst service time. XRD analyses indicate that formation of crystalline CexZr1−xO2 mixed oxide phases occurs on double promotion. In particular, incorporation of low amounts of Zr in the CeO2 fluorite structure provides stable dry reforming catalysis. As shown with TPR, promotion leads to a higher reduced state of Ni. SEM, XRD and TPR analyses demonstrate that highly dispersed, doubly promoted Ni catalysts with a strong metal-support interaction are essential for stable dry reforming and suppression of the formation of carbon filaments.  相似文献   

14.
A series of WO3-promoted Cr2O3-based catalysts were prepared and tested for the simultaneous dehydrogenation and isomerization of n-butane to isobutene. It is found that a Cr2O3/WO3–ZrO2 system is an effective catalyst for this reaction; however, the catalytic behavior is dependent on Cr2O3 and WO3 contents, space velocity and temperature. 10 wt% Cr2O3/20 wt% WO3–ZrO2 can give high initial conversion and isobutene selectivity, but it deactivates rapidly due to the variation of surface properties and pore structure caused by carbon deposition. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
The present study was undertaken to investigate the influence of ceria on the physicochemical and catalytic properties of V2O5/TiO2–ZrO2 for oxidative dehydrogenation of ethylbenzene to styrene utilizing CO2 as a soft oxidant. Monolayer equivalents of ceria, vanadia and ceria–vanadia combination over TiO2–ZrO2 (TZ) support were impregnated by a coprecipitation and wet impregnation methods. Synthesized catalysts were characterized by using X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, temperature programmed reduction, transmission electron microscopy and BET surface area methods. The XRD profiles of 550 °C calcined samples revealed amorphous nature of the materials. Upon increasing calcination temperature to 750 °C, in addition to ZrTiO4 peaks, few other lines due to ZrV2O7 and CeVO4 were observed. The XPS V 2p results revealed the existence of V4+ and V5+ species at 550 and 750 °C calcinations temperatures, respectively. TEM analysis suggested the presence of nanosized (<7 nm) particles with narrow range distribution. Raman measurements confirmed the formation ZrTiO4 under high temperature treatments. TPR measurements suggested a facile reduction of CeO2–V2O5/TZ sample. Among various samples evaluated, the CeO2–V2O5/TZ sample exhibited highest conversion and nearly 100% product selectivity. In particular, the addition of ceria to V2O5/TZ suppressed the coke deposition and allowed a stable and high catalytic activity.  相似文献   

16.
The Fe2O3/Al2O3 catalyst was studied to selectively synthesize mixed alcohols from syngas in a continuously stirred slurry reactor with the oxygenated solvent Polyethylene Glycol-400 (PEG-400). The selectivity of mixed alcohols in the products reached as high as 95 wt.% and the C2+ alcohols (mainly ethanol) was more than 40 wt.% in the total alcohol products at the reaction conditions of 250 °C, 3.0 MPa, H2/CO = 2 and space velocity = 360 ml/gcat h. The hydrogen temperature programmed reduction (H2-TPR) and X-ray photoelectron spectroscopy (XPS) measurements of the catalyst confirmed that the FeO phase was responsible for the high selectivity to mixed alcohols in the process. And the oxygenated solvent PEG-400 was also necessary for the selective synthesis of mixed alcohols in the reaction system.  相似文献   

17.
The dehydrogenation of ethylbenzene to styrene was studied over single-crystalline iron oxide model catalyst films grown epitaxially onto Pt(111) substrates. The role of the iron oxide stoichiometry and of atomic surface defects for the catalytic activity was investigated by preparing single-phased Fe3O4(111) and α-Fe2O3(0001) films with defined surface structures and varying concentrations of atomic surface defects. The structure and composition of the iron oxide films were controlled by low-energy electron diffraction (LEED) and Auger electron spectroscopy (AES), the surface defect concentrations were determined from the diffuse background intensities in the LEED patterns. These ultrahigh vacuum experiments were combined with batch reactor experiments performed in water–ethylbenzene mixtures with a total gas pressure of 0.6 mbar. No styrene formation is observed on the Fe3O4 films. The α-Fe2O3 films are catalytically active, and the styrene formation rate increases with increasing surface defect concentration on these films. This reveals atomic surface defects as active sites for the ethylbenzene dehydrogenation over unpromoted α-Fe2O3. After 30 min reaction time, the films were deactivated by hydrocarbon surface deposits. The deactivation process was monitored by imaging the surface deposits with a photoelectron emission microscope (PEEM). It starts at extended defects and exhibits a pattern formation after further growth. This indicates that the deactivation is a site-selective process. Post-reaction LEED and AES analysis reveals partly reduced Fe2O3 films, which shows that a reduction process takes place during the reaction which also deactivates the Fe2O3 films.  相似文献   

18.
Supported nickel catalysts of composition Ni/Y2O3–ZrO2 were synthesized in one step by the polymerization method and compared with a nickel catalyst prepared by wet impregnation. Stronger interactions were observed in the formed catalysts between NiO species and the oxygen vacancies of the Y2O3–ZrO2 in the catalysts made by polymerization, and these were attributed to less agglomeration of the NiO during the synthesis of the catalysts in one step. The dry reforming of ethanol was catalyzed with a maximum CO2 conversion of 61% on the 5NiYZ catalyst at 800 °C, representing a better response than for the catalyst of the same composition prepared by wet impregnation.  相似文献   

19.
ABSTRACT

The activity and optimum condition of metal-loaded activated carbon catalyst (Me/AC) for oxalic acid (OA) ozonation were evaluated. Results showed that Fe-loaded activated carbon (Fe/AC) showed better activity in five kinds of Me/AC catalysts prepared by a dipping method. Fe catalyst, crystallizing as γ-Fe2O3, dispersed well on AC surface. Fe2O3/AC, with 1.12% Fe weight ratio and 450°C calcination temperature and showed better activity for OA ozonation. 89.2% of OA was removed in the Fe2O3/AC/O3 process, which was higher than those in AC/O3 (79.6%) and O3 (3.2%) processes. The calcination process helped to promote adsorption capability and catalytic activity of AC. In addition, Surface hydroxyl groups played a key role in Fe2O3/AC’s catalytic activity. Acidic condition was more favorable for OA removal in the Fe2O3/AC/O3 process. A hydroxyl radical (?OH) oxidation mechanism was proven in Fe2O3/AC/O3. The catalytic activity of Fe2O3/AC remained satisfactory after several cycles, indicating that Fe2O3/AC had a good reusability property.  相似文献   

20.
Autothermal reforming of methanol for hydrogen production was investigated over ZnO–ZnCr2O4 supported on a series of metal oxides (Al2O3, CeO2, ZrO2 and CeO2–ZrO2). CeO2–ZrO2 mixed oxides with Ce /Zr molar ratio of 4/1 was found to be the optimal support which showed significant effect on the catalytic activity and selectivity. The ZnO–ZnCr2O4/CeO2–ZrO2 and ZnO–ZnCr2O4 catalysts were characterized by XRD, TEM, H2-TPR and XPS. The results show that CeO2–ZrO2 mixed oxides have significant effect on the catalytic performance and the supported catalyst shows more uniform temperature distribution in the catalyst bed which was mainly due to its reasonable redox properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号