首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Pitting corrosion behavior of three kinds of nickel-free and manganese-alloyed high-nitrogen (N) stainless steels (HNSSs) was investigated using electrochemical and immersion testing methods. Type 316L stainless steel (316L SS) was also included for comparison purpose. Both solution-annealed and sensitization-treated steels were examined. The solution-annealed HNSSs showed much better resistance to pitting corrosion than the 316L SS in both neutral and acidic sodium chloride solutions. The addition of molybdenum (Mo) had no further improvement on the pitting corrosion resistance of the solution-annealed HNSSs. The sensitization treatment resulted in significant degradation of the pitting corrosion resistance of the HNSSs, but not for the 316L SS. Typical large size of corrosion pits was observed on the surface of solution-annealed 316L SS, while small and dispersed corrosion pits on the surfaces of solution-annealed HNSSs. The sensitization-treated HNSSs suffered very severe pitting corrosion, accompanying the intergranular attack. The addition of Mo significantly improved the resistance of the sensitization-treated HNSSs to pitting corrosion, particularly in acidic solution. The good resistance of the solution-annealed HNSSs to pitting corrosion could be attributed to the passive film contributed by N, Cr, and Mo. The sensitization treatment degraded the passive film by decreasing anti-corrosion elements and Cr-bearing oxides in the passive film.  相似文献   

2.
The resistance of stainless steels to localised corrosion can be adversely affected by environmental and metallurgical heterogeneities existed in complex industrial infrastructures such as seawater desalination plants exposed to aggressive evnironments. It is therefore critical to enhance the localised corrosion resistance and understand the corrosion behaviour of stainless steels in complex and aggressive industrial environmental conditions. In this work, the localised corrosion resistance of chromised stainless steel 316L (SS316L) in simulated seawater desalination systems has been investigated by electrochemical and surface analytical techniques. It has been found that chromising processes have improved the localised corrosion resistance of SS316L by reducing its susceptibility to pitting, crevice, and welding zone corrosion in simulated seawater desalination environments. This increased corrosion resistance has been explained by electrochemical polarisation studies and surface analysis showing that the chromising treatment at 1050°C resulted in a continuous and stable chromium-enriched layer on the SS316L surface.  相似文献   

3.
利用一种新型的露点腐蚀模拟装置结合原位的电化学阻抗谱,电化学噪声等测试手段评价了304和316L两种不锈钢的盐酸露点腐蚀行为.结果表明,316L不锈钢表现出更优异的耐盐酸露点腐蚀性能,主要原因可归结为两点:一是316L不锈钢钝化膜中含有较高的Cr/(Cr+Fe) 比以及较低含量的Fe;二是316L不锈钢钝化膜中含有能改善抗点蚀性能的Mo.  相似文献   

4.
Superaustenites are mainly used in offshore applications, oil production and chemical industry. Most important types of localised corrosion of these steels are pitting and crevice corrosion. Investigated materials were N08028, S31254 and three modified alloys. Chromium content of investigated alloys varied between 20 and 27%, molybdenum between 3.2 and 6.0%, nitrogen between 0.1 and 0.36% and copper between 0 and 1.1%. For means of comparison stainless steel AISI 316L has been included in the study. Pitting and crevice corrosion of these highly corrosion resistant steels has been investigated by use of standardized tests. Critical pitting temperature and critical crevice temperatures were determined according to ASTM G 48, Methods C and D, respectively. Electrochemical measurements for determination of pitting potentials were done according to ASTM G 61 as well as for determination of critical pitting temperatures according to ASTM G 150. Results are presented as function of MARC (Measure of alloying for resistance to corrosion) defined by Speidel since linear correlation coefficients were higher when compared to conventional PREN. Results obtained by different testing methods must not be compared directly. Every test however is sensitive to microstructural defects like precipitations and segregations that decrease corrosion resistance. The higher alloyed a material is, the higher is its tendency to form microstructural defects, and the more difficult is it to reach its theoretical corrosion resistance at given chemical composition.  相似文献   

5.
The effects of hydrogen on the passivity and pitting susceptibility of type 316L stainless steels have been investigated with alloys containing different nitrogen contents (0.015, 0.198 and 0.556 wt.% N). The study revealed that electrochemically pre-charged hydrogen significantly reduced the pitting resistance of alloys conatining 0.015 and 0.198 wt.% nitrogen contents. In alloy with highest nitrogen content (0.556 wt.% N), an increase in the passive film current density with hydrogen was observed without affecting breakdown potential. Auger electron spectroscopy (AES) analysis of the passive film indicated the presence of nitrogen in the passive film. On other hand, for hydrogen charged samples, nitrogen was found to be significantly less in the passive film. In Electrochemical impedance spectroscopy (EIS) measurement, the decrease in semi-circle radius of Nyquist plot, and the polarization resistance, RP associated with the resistance of the passive film was observed with hydrogen, indicating that hydrogen decreased the stability of the passive film. The present investigation indicated that precharged hydrogen deteriorated the passive film stability and pitting corrosion resistance in these alloys, and the increase in nitrogen content of the alloy offsets the deleterious effect of precharged hydrogen.  相似文献   

6.
Within the framework of a research aimed at characterizing the behaviour of new materials to pitting and crevice corrosion, an investigation has been made, using electrochemical techniques, of the following materials: ELI ferritic stainless steels (18 Cr-2 Mo-Ti; 21 Cr-3 Mo-Ti; 26 Cr-1 Mo); high chromium duplex stainless steel (Z 5 CNDU 21-08) and high chromium-nickel austenitic stainless steel (Z 2 CNDU 25-20); commercial austenitic stainless steels (AISI 304 L and 316 L) and laboratory heats of austenitic stainless steels with low contents of interstitials (LTM/18 Cr- 12 Ni, LTM/16 Cr- 14 Ni-2 Mo). It was possible to graduate a scale of resistance to pitting and crevice corrosion in neutral chloride solutions at 40 C; in particular the two experimental austenitic stainless steels LTM/18 Cr- 12 Ni and LTM/16 Cr- 14 Ni-2 Mo are at the same level as the AISI 316 L and 18 Cr-2 Mo-Ti, respectively. An occluded cell was developed and used for determining the critical potential for crevice corrosion (Elocalized corrosion). For the steels under investigation Elocalized corrosion is less noble than Epitting especially for ELI ferritic 18 Cr-2 Mo-Ti and 21 Cr–3 Mo-Ti.  相似文献   

7.
Abstract

Potentiodynamic anodic polarisation measurements have been carried out on type 316L stainless steel (as a reference material) and on alloys 33 and 24 in a simulated flue gas desulphurisation environment in order to assess the localised corrosion resistance. The results showed that the pitting corrosion resistance was higher in the case of alloys 33 and 24 than in the reference material owing to the higher contents of nitrogen, chromium, and molybdenum. An accelerated leaching study conducted on the alloys 33 and 24 showed only minor tendencies for the leaching of metal ions at various impressed potentials. Observations by SEM confirmed the lower tendency towards pitting of the alloys 33 and 24.  相似文献   

8.
304不锈钢在NaCl-(NH4)2SO4-NH4Cl溶液中的腐蚀行为   总被引:1,自引:0,他引:1  
用电化学极化曲线和交流阻抗方法,研究了对304不锈钢(304SS)在3%NaCl和NaCl-(NH4)2SO4-NH4Cl混合溶液中的腐蚀行为.结果表明,在混合溶液中浸泡750h后,304SS仍然保持良好的钝化状态,其平均腐蚀电流密度为0.056mA/cm^2.根据交流阻抗研究结果,不锈钢在3%NaCl溶液中,主要表现出裸金属表面的点蚀和形成一定程度的钝化膜的特征,在2.0g/LNaCl、0.67g/L(NH4)2sSO4、2.3g/LNH4Cl混合溶液中,不锈钢表面形成稳定致密的钝化膜的典型特征.此钝化膜的电阻远小于腐蚀反应极化电阻.即使在形成良好的钝化膜的情况下,不锈钢所表现出的优良的抗腐蚀性能主要是由于金属表面活性点的钝化,而非钝化膜对离子导电或者对反应物/产物的扩散过程的阻隔作用.  相似文献   

9.
Immense interstitial hardening of 316L austenitic stainless steel via low-temperature paraequilibrium carburization also leads to greatly improved corrosion resistance. Both the hardening and the improved corrosion resistance owe their origin to a “colossal” supersaturation of interstitial carbon. The corrosion resistance of stainless steel involves a Cr2O3-rich passive film, and the composition and thickness of the passive film developed during anodic polarization at various potentials were determined for both carburized and non-treated steels using grazing incidence X-ray photoelectron spectroscopy. Passive oxide film breakdown is a necessary step in pitting corrosion, and appears to occur in these steels at a critical film thickness of ≈3 nm. We suggest that this breakdown is of chemomechanical origin. Long wavelength thickness perturbations occur during film growth to reduce the strain energy density in the passive film arising from intrinsic and electric field-induced stresses. At the critical thickness, the localized thinning is sufficient to lead to dielectric breakdown and nucleation of pitting corrosion. The improved corrosion resistance for the carburized material results from thinner passive films at a given potential and hence a delay in the detrimental effect of the thickness perturbations.  相似文献   

10.
The uniform and intergranular corrosion behavior of two kinds of nickel‐free and manganese alloyed high nitrogen stainless steels (HNSSs) were investigated. A type of 316L stainless steel (316L SS) was also included for comparison purpose. Both solution annealed (SA) and sensitization treated (ST) steels were examined. It was found that the SA HNSSs had much weaker resistance to uniform corrosion compared to the SA 316L SS. The addition of molybdenum, to some extent, improved the uniform corrosion resistance of the HNSSs. The sensitization treatment had little influence on the uniform corrosion resistance of all the steels. The HNSSs showed an obvious susceptibility to intergranular corrosion, in particular the ST HNSSs. The intergranular corrosion rates of the sensitized HNSSs were much higher than that of the sensitized 316L SS. The degree of interganular attack for the ST HNSSs was much more serious than that for the 316L SS. The addition of molybdenum obviously improved the resistance of the ST HNSSs to intergranular corrosion. The double loop electrochemical potentiokinetic reactivation tests also proved that the HNSSs were rather susceptible to the sensitization treatment compared to the 316L SS. The relatively weak resistance of the HNSSs to uniform and intergranular corrosion may be due to high manganese promoted anodic dissolution. The improvement of uniform and intergranular corrosion resistance caused by the addition of molybdenum could be attributed to the synergistic effects of molybdenum and nitrogen in the HNSSs on the formation and stability of passive film.  相似文献   

11.
用开路电位、动电位扫描、电化学阻抗技术和扫描电镜等方法,研究了316L不锈钢在硫酸盐还原菌(SRB)溶液中的腐蚀电化学行为,分析了炼油厂冷却水系统微生物腐蚀的特征及机制.结果表明,在含有SRB溶液中的自腐蚀电位(Ecorr)和点蚀电位(Epit)随浸泡时间的增加而负移,极化电阻(Rp)随浸泡时间的增加而减小;在含有SRB溶液中的腐蚀速率均大于在无菌溶液中;SRB的生长代谢活动影响了316L SS表面的腐蚀过程,使不锈钢表面的钝化膜层腐蚀破坏程度增加,加速了316L SS的腐蚀.  相似文献   

12.
Nitrogen ion implantation on titanium-modified type 316L stainless steel (SS) at the energy of 70 keV was carried out at different doses ranging from 1×1015 to 2.5×1017 ions/cm2. These samples were subjected to open circuit potential (OCP)—time measurement, cyclic polarization, and accelerated leaching studies—in order to discover the optimum dose that can provide good localized corrosion resistance in a simulated body fluid condition. The results showed that the localized corrosion resistance improved with an increase in doses up to 1×1017 ions/cm2, beyond which it started to deteriorate. The results of the accelerated leaching studies showed that the leaching of the major alloying elements was arrested upon nitrogen ion implantation. Gracing incidence x-ray diffraction studies showed the formation of chromium nitrides at a dose of 2.5×1017 ions/cm2. X-ray photoelectron spectroscopy studies revealed the presence of these chromium nitrides in the passive film, which was attributed to the decreased corrosion resistance at a higher dose. Secondary ion mass spectroscopy studies on the passive film showed the variation in the depth profile upon nitrogen ion implantation. Thus, nitrogen ion implantation can be effectively used as a method to improve the corrosion resistance of the orthopedic implant devices made of titanium-modified type 316L SS. The nature of the passive film and its influence on corrosion resistance are discussed in this article.  相似文献   

13.
6种不锈钢的化学和电化学腐蚀行为   总被引:2,自引:0,他引:2  
罗永赞 《腐蚀与防护》1999,20(7):310-313
采用化学和电化学加速腐蚀试验方法对6种不锈钢的耐点蚀和缝隙腐蚀性能进行了评价。结果表明:两种评价方法之间具有良好的相关性;6种不锈钢按照点蚀和缝隙腐蚀抗力由大到小的顺序排列为3^#〉1^#〉6^#〉2^#〉4^#〉5^#,详细描述了6种不锈钢各自的腐蚀行为特征。  相似文献   

14.
Repassivation behavior of type-312L stainless steel containing 6% of molybdenum was examined in NaCl solution using in situ micro-indentation technique, together with type-304 and 316L stainless steels. High stability of the passive film formed on the type-312L stainless steel was also examined by depth profiling analysis of passive films using glow discharge optical emission spectroscopy (GDOES). In 0.9 mol dm−3 NaCl solution at 296 K the type-304 and 316L stainless steels are passive only up to 0.3 V (SHE), above which pitting corrosion occurs. In contrast, no pitting corrosion occurs on type-312L stainless steel. Despite the significant difference of the pitting corrosion resistance, the repassivation kinetics of the three stainless steels, examined by micro-indentation at 0.3 V (SHE), is similar. The presence of molybdenum in the stainless steel does not influence the repassivation kinetics. The charge required to repassivate the ruptured type-312L stainless steel surface increases approximately linearly with the potential, even though the passivity-maintaining current increased markedly at potentials close to the transpassive region. Repassivation occurs without accompanying significant dissolution of steel, regardless of the stability of passive state. Depth profiling analyses of the passive films on the type-312L stainless steels formed at several potentials revealed that molybdenum species enrich in the outer layer of the passive film, below which chromium-enriched layer is present. The permeation of chloride ions may be impeded by the outer layer containing molybdate, enhancing the resistance against the localized corrosion of the type-312L stainless steel.  相似文献   

15.
ABSTRACT

The adsorption tower made of type 316L stainless steel (SS) in Multi-nuclide Removal Equipment (Advanced Liquid Processing System) which uses Ag-impregnated activated carbon (Ag AC) as an adsorbent experienced crevice corrosion. The influence of Ag AC on the crevice corrosion susceptibility and Esp of 316L SS was investigated by performing electrochemical experiments. Crevice corrosion was observed in the specimen in contact with the Ag AC. On the other hand, there was no crevice corrosion without the Ag AC in both pH 7.4 and pH 12 solutions. Clear ennoblement of spontaneous potential (Esp) by in contact with activated carbon was observed and that was clearly higher than the repassivation potential for crevice corrosion (ER,CREV). Thus, the presence of the AC notably increased Esp of 316L SS and this resulted in increased crevice corrosion susceptibility by the galvanic effect.

This paper is part of a supplementary issue from the 17th Asia-Pacific Corrosion Control Conference (APCCC-17).  相似文献   

16.
2205和316L不锈钢在氢氟酸中的电化学腐蚀行为   总被引:1,自引:0,他引:1  
通过动电位极化和电化学阻抗方法考察了2205双相不锈钢和316L不锈钢在5%(体积分数)HF溶液中的电化学行为,借助Mott-Schokkty曲线分析了两种不锈钢表面钝化膜的半导体特性。结果表明:两种不锈钢在氢氟酸溶液中都能发生钝化,且2205双相不锈钢的钝化区间范围更宽,维钝电流密度更低。2205双相不锈钢表面钝化膜表现出更高的钝化膜电阻和电荷转移电阻,其抗氢氟酸腐蚀性能优于316L不锈钢,这主要与2205双相不锈钢中的Mo和Cr含量高、表面钝化膜缺陷少、钝化膜易修复等因素有关。  相似文献   

17.
Abstract

The corrosion of austenitic stainless steels types AISI 304, 310 and 316, and of Inconel alloy, was studied at 25°c, in 5% NaCl solution at an initial pH value of 2·5, and in 5% FeCl3 at pH 1·2. The resistance of the alloys in both corrosive environments was in the order: 310 > 316 > 304 > Inconel. Pre-treatment of the specimens with bubbling chlorine gas increased the subsequent corrosion rates of the alloys. Intermittent bubbling of gas mixtures such as Cl2, N2, and/or H2S, increased the corrosion rate of Inconel alloy when Cl2 was present, but decreased the corrosion rate when H2 was present. Heat treatment of austenitic stainless steels increased the subsequent corrosion rates, whereas 16% pre-straining of annealed specimens slightly reduced the rates. Addition of trisodium phosphate to the corrosive solution reduced the corrosion rates and pitting tendency for all three types of austenitic stainless steel.  相似文献   

18.
The surface films formed on type 316LN stainless steels (SS) with different nitrogen contents, during potentiodynamic polarization in acidified 1 M NaCl solution, were characterized by Laser Raman Spectroscopy (LRS). LRS confirmed the presence of oxides and oxychlorides of iron and chromium, hydrated chlorides and nitrates in the film. Raman mapping showed increasing nitrate content in the film with increasing nitrogen content. The film on the uncorroded material showed the presence of chromium and molybdenum oxides. The improvement in pitting corrosion resistance of type 316LN SS with increasing nitrogen content was attributed to increased amount of nitrates in the passive film.  相似文献   

19.
Following the success of forming a carbon S-phase (expanded austenite) surface layer on medical grade Ni-free austenitic stainless steel by DC plasma carburising, the established commercial carburising process Kolsterising® was performed on both Ni-containing (AISI 304) and Ni-free austenitic stainless steels. While the Ni-containing stainless steel responded very well to Kolsterising®, the Ni-free alloy did not. The carbon absorption and the hardness of the Kolsterised® Ni-free alloy are inferior to Kolsterised® AISI 304 Ni-containing stainless steel, however, the hardness of the untreated Ni-free alloy was doubled by Kolsterising®. The response of both Kolsterised® Ni-free and Ni-containing alloys to pitting, crevice corrosion and intergranular corrosion resistance was similar. From this work it can be concluded that the Kolsterised® austenitic stainless steels do not suffer from intergranular corrosion but are susceptible to intragranular pitting when tested in boiling sulphuric acid and copper sulphate solution. It was also observed that Kolsterising® improves significantly the pitting and crevice corrosion resistance of the alloys used in this study.  相似文献   

20.
Pitting and crevice corrosion of stainless steels in chloride solutions In practice stainless steels in chloride containing waters are found to be susceptible to crevice corrosion and pitting. Corrosion tests were carried out on AISI 304 L stainless using a simulated crevice and the compositions of the electrolyte in the crevice determined. Long term potentiostatic tests were used to determine the critical potentials for crevice corrosion (US), for various steels in sodium chloride solutions at different concentrations and temperatures. The steels studied were 22 CrMo V 121, X 22 CrNi 17 and AISI 304 L. Like the critical pitting potential (UL), US was found to have a strong dependence on the chloride content of the external solution. At higher concentrations the two potentials were similar. At lower concentrations the US was lower than UL. The knowledge of these critical potentials together with well known rest potentials for a steel in an electrolyte of known concentration, allows conclusions to be drawn about its susceptibility to pitting and crevice corrosion. The method is suitable also for other passive metals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号