首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Multiwalled carbon nanotubes (MWCNTs) were purified by mixed HNO3/H2SO4 solution and were employed as adsorbents to study adsorption kinetics and thermodynamics of trihalomethanes (THMs) from chlorinated drinking water. The amount of THMs adsorbed onto CNTs decreased with a rise in temperature and high adsorption capacities were found at 5 and 15 degrees C. Under the same conditions, the purified CNTs possess two to three times more adsorption capacities of CHCl3, which accounts for a major portion of THMs in the chlorinated drinking water, than the commercially available PAC suggesting that CNTs are efficient adsorbents. The thermodynamic analysis revealed that the adsorption of THMs onto CNTs is exothermic and spontaneous.  相似文献   

2.
The adsorption of mercury from aqueous solutions and chlor-alkali industry effluent on steam activated and sulphurised steam activated carbons prepared from bagasse pith have been studied comparatively. The uptake of mercury(II) (Hg(II)) was maximum by steam activated carbon in presence of SO(2) and H(2)S (SA-SO(2)-H(2)S-C) followed by steam activated carbon in presence of SO(2) (SA-SO(2)-C), steam activated carbon in presence of H(2)S (SA-H(2)S-C) and steam activated carbon (SA-C) at the same concentration, pH and temperature of the solution. Adsorption experiments demonstrate that the adsorption process corresponds to the pseudo-second-order kinetic model and equilibrium results correspond to the Langmuir adsorption isotherm. Kinetic parameters as a function of initial concentration, for all adsorbents were calculated. Batch studies indicated that the optimum pH range for the adsorption of Hg(II) on sulphurised carbons was between 4 and 9 and for sulphur free carbon was between 6 and 9 at 30 degrees C. The adsorptive behaviour of the activated carbons is explained on the basis of their chemical nature and porous texture. Decrease in ionic strength and increase in temperature of the solution has been found to improve the uptake of Hg(II). Synthetic and chlor-alkali industrial wastewaters were also treated by sulphurised activated carbons to demonstrate their efficiencies in removing Hg(II) from wastewaters. Some feasibility experiments have been carried out with a view to recover the adsorbed Hg(II) and regenerate the spent activated carbons using 0.2M HCl solution. The data obtained point towards viable adsorbents, which are both effective as well as economically attractive for Hg(II) removal from wastewaters.  相似文献   

3.
Activated carbons have been prepared by a two-step physical activation with steam at different burn-off levels to study the porosity development and its effect in zinc adsorption from aqueous solutions. The main material used was the residual from the extraction with solvent of the kernel-oil [solvent extracted olive pulp (SEOP)]. Olive, apricot and peach stone have been also used as different precursors. The products were characterized by N2 at 77K adsorption, Hg porosimetry and iodine number determination. The influence of surface complexes and pH has been investigated in an attempt to elucidate the adsorption phenomena. The effect of different treatments [demineralization with H2SO4 and oxidation with (NH4)2S2O8] was also evaluated for the adsorption of zinc species.Both basic and acidic carbons, originated from SEOP, show remarkable adsorption ability at solution pH=7. Their adsorption ability mainly depends on the content and nature of functional surface groups, the ash content of the precursors and the pH of the solution. These activated carbons were proved to be efficient adsorbents for the removal of water pollutants and contaminants.  相似文献   

4.
We characterized single-walled carbon nanotubes before and after HNO3/H2SO4 treatments for different times by scanning electron microscopy, Raman spectroscopy, and N2 adsorption at 77 K. Single-walled carbon nanotube assembly revealed a bimodal pore structure of microporosity (surface area of 476 m2 g(-1)) and mesoporosity (surface area of 476 m2 g(-1)) with a high total surface area of 1048 m2g(-1). The microporosity increased prominently after HNO3/H2SO4 treatments, whereas the mesoporosity decreased progressively with the treatment time. The HNO3/H2SO4 treatment of nanotubes induced an aggregation and alignment that should transform larger mesopores of nanotube assemblies into smaller ones, and smaller mesopores into micropores, resulting in the decrease of external surface area. This effect was attributed to the presence of abundant defects on the tube wall that were saturated by functional groups during the acid treatment of the single-walled carbon nanotubes.  相似文献   

5.
Adsorption of cadmium by sulphur dioxide treated activated carbon   总被引:1,自引:0,他引:1  
Merck carbon (1.5 mm) was treated in three ways: heating from ambient temperature to 900 degrees C in SO(2); treatment at ambient temperature in SO(2); or successive treatments in SO(2) and H(2)S at ambient temperature. All samples were then characterised and tested as adsorbents of Cd(2+) from aqueous solution. The characterisation was in terms of composition by effecting ultimate and proximate analyses and also of textural properties by N(2) adsorption at -196 degrees C. Kinetics and extent of the adsorption process of Cd(2+) were studied at 25 and 45 degrees C at pH of the Cd(2+) solution (i.e., 6.2) and at 25 degrees C also at pH 2.0. The various treatments of the starting carbon had no significant effect on the kinetics of the adsorption of Cd(2+), but increased its adsorption capacity. The most effective treatment was heating to 900 degrees C, the adsorption in this case being 70.3% more than that of the starting carbon. The adsorption increased at 45 degrees C but decreased at pH 2.0 when compared to adsorption at 25 degrees C and pH 6.2, respectively.  相似文献   

6.
The carbon-bearing adsorbents were prepared from biochemical and surplus sludges by physical activation and chemical activation. The results indicated that the adsorbents made by way of chemical activation were better, with the optimum activator being complex of ZnCl(2) and H(2)SO(4). Moreover, the optimum preparation conditions were concentration of two activators 5 mol/L (the ratio of ZnCl(2) and H(2)SO(4) was 2:1), at the activating temperature of 550 degrees C, in the proportion of solid to liquid 1:2.5, in a period of 2h. Contrasting the active carbon, the carbon-bearing adsorbents were characterized by X-ray diffraction (XRD), energy dispersive X-ray spectrometer (EDS), scanning electron microscope (SEM), BET and BJH. By application of those adsorbents to treatment of wastewater of urban, the treatment effect of the carbon-bearing adsorbents were better than the active carbon. On the condition that the concentration was 0.5%, the COD, P and chromaticity color removal rates of carbon-bearing adsorbent made from the biochemical sludge of sewage were higher, which were 79.1, 98.3 and 87.5%, respectively, and the dynamic adsorption capacity was 47.8 mg/g.  相似文献   

7.
分别采用混酸(浓H2SO4和浓HNOs)、浓HNOs、浓NaOH及浓H2SO4/H2O2对碳纳米管(CNTs)在室温下进行表面处理,通过FTIR、SEM、DSC和TGA研究了各改性方法对CNTs/环氧树脂(EP)复合材料热性能和电性能的影响.结果表明,混酸处理使CNTs在EP中的分散性、EP的玻璃化温度和热分解温度都显著提高,其它3种方法也有这种作用,相比较而言,H2SO4/H2O2和HNO3的改性作用稍差,而NaOH的最差.4种处理方法都使复合材料的导电性能、介电常数以及介电损耗显著下降,其中混酸处理使上述性能下降的程度最高,其次为H2SO4/H2O2处理,NaOH处理和HNO3处理对电性能影响较小.  相似文献   

8.
Refractive indices of various H(2)SO(4)-H(2)O, HNO(3)-H(2)O, and H(2)SO(4)-HNO(3)-H(2)O solutions were measured at four wavelengths in the visible (351.0, 533.5, 632.9, and 782.6 nm) over a temperature range from 30 to -60 degrees C. The temperature dependence has been determined for the first time to the authors' knowledge. This dependence is of importance for applications to atmospheric aerosols at low temperatures. In particular, it is shown that (1) the molar refractivity of the solutions is independent of temperature, whereas the temperature dependence of the refractive index arises solely through the temperature dependence of the solution's mass density, (2) the molar refractivities of H(2)SO(4) and HNO(3) in a ternary solution may be calculated as the weighted sum of the molar refractivities of two binary solutions evaluated at a concentration that corresponds to the total acid concentration, and (3) the H(2)O molar refractivity in the solutions may be taken equal to that of pure water. Although the data for the ternary system have been used for this model verification, data for binary H(2)SO(4)-H(2)O and HNO(3)-H(2)O solutions were used to improve the accuracy of the modeled refractive indices to better than 0.0017% or 0.15% for concentrations of 5-70 wt.% and wavelengths from the near ultraviolet to the near infrared (0.25-2 mum).  相似文献   

9.
In the present study, a deeper understanding of adsorption behavior of Pb(II) from aqueous systems onto activated carbon and treated activated carbon has been attempted via static and column mode studies under various conditions. It probes mainly two adsorbents that is, activated carbon (AC) and modified activated carbon (AC-S). Characterization of both the adsorbents was one of the key focal areas of the present study. This has shown a clear change or demarcation in the various physical and chemical properties of the modified adsorbent from its precursor activated carbon. Both the adsorbents are subjected to static mode adsorption studies and then after a comparison based on isotherm analysis; more efficient adsorbent is screened for column mode adsorption studies. The lead removal increased for sample of treated carbon. The extent of Pb(II) removal was found to be higher in the treated activated carbon. The aim of carrying out the continuous-flow studies was to assess the effect of various process variables, viz., of bed height, hydraulic loading rate and initial feed concentration on breakthrough time and adsorption capacity. This has helped in ascertaining the practical applicability of the adsorbent. Breakthrough curves were plotted for the adsorption of lead on the adsorbent using continuous-flow column operation by varying different operating parameters like hydraulic loading rate (3.0-10.5 m3/(hm2)), bed height (0.3-0.5 m) and feed concentrations (2.0-6.0 mg/l). At the end, an attempt has also been made to model the data generated from column studies using the empirical relationship based on Bohart-Adams model. This model has provided an objective framework to the subjective interpretation of the adsorption system and the model constant obtained here can be used to achieve the ultimate objective of our study that is, up scaling and designing of adsorption process at the pilot plant scale level. AC-S column regeneration using 0.5 and 1.0M concentration of HNO3 has been investigated. It has shown a regeneration efficiency of 52.0% with 0.5 M HNO3.  相似文献   

10.
The main objective of this study was to list and compare the advantages and disadvantages of different methodologies to modify the surface of activated carbons (ACs) for their application as adsorbents to remove organic and inorganic pollutants from aqueous phase. These methodologies have been categorized into four broad groups: oxidation, sulfuration, ammonification, and coordinated ligand anchorage. Numerous investigations into the removal of metals from water have modified carbon surfaces to increase their content of acidic surface functional groups by using H(2)O(2), O(3) and HNO(3). Because these treatments can reduce the AC surface area, researchers are seeking alternative methods to modify and/or create surface functional groups without the undesirable effect of pore blockage. The nitrogenation or sulfuration of the AC surface can increase its basicity favoring the adsorption of organic compounds. The introduction of nitrogen or sulfur complexes on the carbon surface increases the surface polarity and, therefore, the specific interaction with polar pollutants. Different coordinated ligands have also been used to modify ACs, showing that coordinated ligand anchorage on the AC surface modifies its textural and chemical properties, but research to date has largely focused on the use of these modified materials to remove heavy metals from water by complexes formation.  相似文献   

11.
The acidic oxidation with HNO3/H2SO4 mixtures is widely reported as an effective method to functionalize multi-walled carbon nanotubes (MWCNT). Although effective, a bad control of the oxidation conditions frequently cause serious modifications of carbon nanotube network, limiting further potential applications. Investigations about the effect of functionalization operating conditions on the morphological, chemical and chemical-physical properties of MWCNT can be useful for a proper setting of oxidation reactions of MWCNT according to their specific applications. In this work the effect of HNO3/H2SO4 ratio on the morphological and chemical-physical properties and on the degree of functionalization of MWCNT was investigated. Electron microscopy, thermogravimetric, X-ray diffraction, titration and water dispersion analyses clearly revealed that the increase of the amount of concentrated sulphuric acid in the HNO3/H2SO4 mixture lead to an increase of the amount of functional groups on the MWCNT surface but also to an increase of structural damage in terms of tube cutting and generation of additional defects in the graphitic network of pristine  相似文献   

12.
Phosphate removal from wastewater using red mud   总被引:6,自引:0,他引:6  
Red mud, a waste residue of alumina refinery, has been used to develop effective adsorbents to remove phosphate from aqueous solution. Acid and acid-thermal treatments were employed to treat the raw red mud. The effects of different treatment methods, pH of solution and operating temperature on adsorption have been examined in batch experiments. It was found that all activated red mud samples show higher surface area and total pore volume as well as higher adsorption capacity for phosphate removal. The red mud with HCl treatment shows the highest adsorption capacity among all the red mud samples, giving adsorption capacity of 0.58 mg P/g at pH 5.5 and 40 degrees C. The adsorption capacity of the red mud adsorbents decreases with increase of pH. At pH 2, the red mud with HCl treatment exhibits adsorption of 0.8 mg P/g while the adsorption can be lowered to 0.05 mg P/g at pH 10. However, the adsorption is improved at higher temperature by increasing 25% from 30 to 40 degrees C. The kinetic studies of phosphate adsorption onto red mud indicate that the adsorption mainly follows the parallel first-order kinetics due to the presence of two acidic phosphorus species, H(2)PO(4)(-) and HPO(4)(2-). An analysis of the adsorption data indicates that the Freundlich isotherm provides a better fitting than the Langmuir model.  相似文献   

13.
Abstract

Diatom silica microparticles were chemically modified with self-assembled monolayers of 3-mercaptopropyl-trimethoxysilane (MPTMS), 3-aminopropyl-trimethoxysilane (APTES) and n-(2-aminoethyl)-3-aminopropyl-trimethoxysilane (AEAPTMS), and their application for the adsorption of mercury ions (Hg(II)) is demonstrated. Fourier transform infrared spectroscopy and x-ray photoelectron spectroscopy analyses revealed that the functional groups (–SH or –NH2) were successfully grafted onto the diatom silica surface. The kinetics and efficiency of Hg(II) adsorption were markedly improved by the chemical functionalization of diatom microparticles. The relationship among the type of functional groups, pH and adsorption efficiency of mercury ions was established. The Hg(II) adsorption reached equilibrium within 60 min with maximum adsorption capacities of 185.2, 131.7 and 169.5 mg g?1 for particles functionalized with MPTMS, APTES and AEAPTMS, respectively. The adsorption behavior followed a pseudo-second-order reaction model and Langmuirian isotherm. These results show that mercapto- or amino-functionalized diatom microparticles are promising natural, cost-effective and environmentally benign adsorbents suitable for the removal of mercury ions from aqueous solutions.  相似文献   

14.
Diatom silica microparticles were chemically modified with self-assembled monolayers of 3-mercaptopropyl-trimethoxysilane (MPTMS), 3-aminopropyl-trimethoxysilane (APTES) and n-(2-aminoethyl)-3-aminopropyl-trimethoxysilane (AEAPTMS), and their application for the adsorption of mercury ions (Hg(II)) is demonstrated. Fourier transform infrared spectroscopy and x-ray photoelectron spectroscopy analyses revealed that the functional groups (–SH or –NH2) were successfully grafted onto the diatom silica surface. The kinetics and efficiency of Hg(II) adsorption were markedly improved by the chemical functionalization of diatom microparticles. The relationship among the type of functional groups, pH and adsorption efficiency of mercury ions was established. The Hg(II) adsorption reached equilibrium within 60 min with maximum adsorption capacities of 185.2, 131.7 and 169.5 mg g−1 for particles functionalized with MPTMS, APTES and AEAPTMS, respectively. The adsorption behavior followed a pseudo-second-order reaction model and Langmuirian isotherm. These results show that mercapto- or amino-functionalized diatom microparticles are promising natural, cost-effective and environmentally benign adsorbents suitable for the removal of mercury ions from aqueous solutions.  相似文献   

15.
为了提高环梯形聚苯基硅倍半氧烷(Cyclic Ladder Polyphenylsilsesquioxane,CL-PPSQ)在聚合物中的相容性,使用多种硝化试剂,包括发烟硝酸、HNO_3-H_2SO_4、KNO_3-H_2SO_4、HNO_3-KNO_3、CH_3COOH-KNO_3、(CH_3CO)_2O-HNO_3,在不同的条件下对其进行硝化,制备得到含硝基基团的NO_2-PPSQ。使用FTIR、元素分析、GPC、TGA、~1 H NMR等对硝化产物进行表征。结果表明:发烟硝酸、HNO_3-H_2SO_4、KNO_3-H_2SO_4对CL-PPSQ的硝化能力最强,产物中硝基数目最多,但产物分子量降低,硅氧烷链段发生断裂;而HNO_3-KNO_3和CH_3COOH-KNO_3对CL-PPSQ没有硝化能力;(CH_3CO)_2O-HNO_3硝化过程温和,硝化能力适中,制备得到分子链不断裂的硝化产物。对不同硝化试剂的硝化机理进行了分析,在发烟硝酸、HNO_3-H_2SO_4、KNO_3-H_2SO_4体系中,NO_2~+为硝化活化剂;对于(CH_3CO)_2O-HNO_3体系,CH_3COONO_2为主要的硝化活化剂。  相似文献   

16.
Amino functional mesoporous silica SBA-15 materials have been prepared to develop efficient adsorbents of heavy metals in wastewater. Functionalization with amino groups has been carried out by using two independent methods, grafting and co-condensation. Three organic moieties have been selected to incorporate the active amino sites: aminopropyl (H(2)N-(CH(2))(3)-), [2-aminoethylamino]-propyl (H(2)N-(CH(2))(2)-NH-(CH(2))(3)-) and [(2-aminoethylamino)-ethylamino]-propyl (H(2)N-(CH(2))(2)-NH-(CH(2))(2)-NH-(CH(2))(3)-). Materials have been characterized by XRD, nitrogen sorption measurements and chemical analysis. We have found that all materials preserve the mesoscopic order and exhibit suitable textural properties and nitrogen contents to act as potential adsorbents. Metal removal from aqueous solution has been examined for Cu(II), Ni(II), Pb(II), Cd(II), and Zn(II); adsorption performances of materials prepared by the two functionalization methods have been compared. In addition, copper adsorption process has been thoroughly studied from both kinetic and equilibrium points of view for some selected materials. Aqueous Cu(II) adsorption rates show that the overall process is fast and the time evolution can be successfully reproduced with a pseudo-second-order kinetic model. Whole copper adsorption isotherms have been obtained at 25 degrees C. Significant maximum adsorption capacities have been found with excellent behavior at low concentration.  相似文献   

17.
Wang Z  Gao YX  Belzile N 《Analytical chemistry》2001,73(19):4711-4716
A microwave preparation procedure is proposed for selenium speciation in natural and drinking waters. Different chemical reagents were tested, and the conditions for Se speciation were optimized. The effect of the different reagents on various oxidation states of selenium under microwave digestion conditions was investigated. Most of the Se(-II) was converted to selenite when digested with HNO3 and <20% to selenate. The digestion with H2O2/H2SO4 can change most Se species into Se(IV). The concentration of Se(IV) in the samples was then determined by HPLC with a fluorescence detector after derivatization with 2,3-diamino-naphthalene (DAN). The microwave preparation procedure allows Se speciation in water samples. Se(IV) was determined after concentrating the sample under nitrogen protection. The amount of Se(IV) and Se(VI) was measured by adding an equal volume of concentrated hydrochloric acid to water sample to reduce Se(VI) to Se(IV). Then the amount of Se(VI) can be calculated by subtraction. The total selenium can be determined after digestion with H2O2/H2SO4, or after digestion with HNO3 followed by reduction with concentrated hydrochloric acid. Selenium (-II, 0) was calculated by subtracting inorganic Se(IV+VI) from the total. Detection limits of 0.0066 ng and 0.0096 ng Se were obtained for HNO3 and H202/H2SO4 as digestion reagents, respectively. The total Se in the four water samples tested range from 0.20 to 0.90 microg L(-1). Among them the dominant form was Se(VI) with the exception of pond waters where Se(-II) predominated.  相似文献   

18.
In this study, removal of Cu(2+), Cd(2+) and Pb(2+) from aqueous solutions by adsorption onto pyrite and synthetic iron sulphide (SIS) was investigated as a function of pH, contact time, adsorbent dosage, initial metal concentration and temperature. It has been determined that the adsorption of metal ions onto both adsorbents is pH dependent and the adsorption capacities increase with the increasing temperature. The mechanisms governing the metal removal processes were determined as chemical precipitation at low pH (<3) due to H(2)S generation and adsorption at high pH (in the range of 3-6). The metal adsorption yields also increased with the increasing adsorbent dosage and contact time and reached to equilibrium for both adsorbents. The Cu(2+), Cd(2+) and Pb(2+) adsorption capacities of both adsorbents decrease in the order of Pb(2+)>Cu(2+)>Cd(2+). Except for cadmium, little fraction of copper and lead in the solid adsorption residues was desorbed in acidic media.  相似文献   

19.
To recycle the spent catalyst for the removal of VOCs, the benzene, toluene, and xylene (BTX) complete oxidations were studied over pretreated palladium based spent catalyst in a fixed bed flow reactor system at atmospheric pressure. Two different pretreatment methods with gas (air and hydrogen) and acid aqueous solution (HCl, H(2)SO(4), HNO(3), H(3)PO(4) and CH(3)COOH) were used to investigate the catalytic activity of spent catalyst. The properties of the spent and pretreated Pd based catalyst were characterized by XRD, BET, TEM, ICP, and XPS. The results of light-off curves indicate that the catalytic activity of toluene oxidation for pretreated samples is in the order of hydrogen>air>HNO(3)>CH(3)COOH>H(2)SO(4)>H(3)PO(4)>HCl. In addition, the air and the acid aqueous pretreated catalyst activities were significantly decreased compared to that of the spent (or parent) catalyst. Moreover, hydrogen pretreated (or reduced) catalysts having mainly metallic form show the best performance in removing the toluene vapours compared to other pretreated samples. The reduction temperature made a significant difference in the catalytic performance of the spent catalyst pretreated with hydrogen. XPS results clearly supported that the palladium state of the spent catalysts pretreated at 300 degrees C was shifted more toward metallic form than other reduced catalysts. Furthermore, the results of a long-term test and catalytic activity of aromatic hydrocarbons also supported that the hydrogen pretreated spent catalyst was a good candidate for removing toxic compounds.  相似文献   

20.
The magnetic carbon@Fe3O4 nanoparticles have been fabricated by a simple one-step hydrothermal method and applied as adsorbents for removal of organic dyes such as Congo red from aqueous solution. The prepared products were characterized by transmission electron microscopy, X-ray diffraction, Fourier transform infrared spectra, thermo-gravimetric analysis, nitrogen adsorption–desorption isotherms, UV–vis spectrum, and vibrating sample magnetometer. The adsorption performances of the products were tested with removal of Congo red from aqueous solution. The carbon@Fe3O4 nanoparticles possess high adsorption capacity and excellent magnetic separability by an external magnetic field, which is attributed to its high specific surface area providing more surface active sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号