首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
以Higbie的渗透理论为基础,建立了多室气升式环流反应器体积传质系数的模型方程.用亚硫酸钠空气氧化法测定反应器的比表面积和体积传质系数,讨论了表观气速和催化剂浓度对它们的影响,并验证了模型的适用性。  相似文献   

2.
多管环流反应器的流动和传质特性   总被引:18,自引:1,他引:18       下载免费PDF全文
刘永民  刘铮  袁乃驹 《化工学报》2001,52(3):222-226
根据动量平衡原理建立了多管气升式环流反应器 (MALR)中液体速度的理论关系式 ,给出了流动阻力系数的计算方法 ;以Higbie的渗透理论为基础提出了计算液体表面微元在相界面暴露时间的方法 ,并建立了预测体积传质系数的模型方程 .测定了空气 -水体系中MALR的体积传质系数和循环液速随两个上升管表观气速的变化规律 ,并分别将体积传质系数、循环液速的预测值与实测值进行了比较  相似文献   

3.
为改善气体分布,提高传质性能,文中开发出一种两级喷射式环流反应器,研究了液体喷射速度、空塔气速和下级进气比对该反应器流体力学和传质特性的影响。分别采用压差法、电导电极法和动态溶氧法对反应器气含率、环流液速和体积传质系数进行了测量。实验结果表明:液体喷射速度和空塔气速的增加,环流反应器可以得到理想的流体力学和传质特性;分段进气比的变化显著影响了反应器体积传质系数,且存在最佳进气比;最佳进气比随着液体喷射速度的增加而增大,而基本不受空塔气速的影响;与单级喷射环流反应器相比,采用最佳进气比的两级喷射式环流反应器的传质效率有了显著的提升。  相似文献   

4.
三相强制浆料环流反应器的局部传质行为   总被引:1,自引:0,他引:1  
提出了一种新型的强制外循环三相环流反应器结构,根据结构特点及流动状态的不同,将反应器分为6个不同的流动区域. 在f300 mm′1700 mm的实验装置内,采用氧气气提-空气解吸法,详细考察了内环表观气速0.006~0.19 m/s、外循环液速0.03, 0.05 m/s、固含率5%, 10%, 15%时不同流动区域的体积传质系数. 发现外循环液流影响区体积传质系数最大,最高可达0.754 s-1,外环环隙区最小,不超过0.043 s-1,环流反应器整体体积传质系数与气液分离区体积传质系数接近. 适当扩大内、外环截面积比有利于提高环流反应器的传质性能. 环流反应器整体体积传质系数随内环表观气速和外循环液速的增加而增加,随颗粒浓度的增加略有降低.  相似文献   

5.
羰基合成反应一般采用射流鼓泡反应器,该类反应器气液混合的方式采用射流而非机械搅拌,其主要优点是结构简单、制作简便、维护费用低。研究该类型反应器的传质系数对于其设计、优化及放大操作均具有重要意义。本研究采用缩颈式圆形喷嘴,以动态溶氧法对射流鼓泡反应器内的液相体积传质系数进行测定,考察了表观气速、射流雷诺数对液相体积传质系数的影响。研究发现,随气速增大液相体积传质系数的变化规律为先增大而后保持不变。维持表观气速不变,随雷诺数增加液相体积传质系数增大,但当表观气速小于0.0012 m/s时,雷诺数对传质改善较小。建立了液相体积传质系数的经验关联式,当气体输入功率占总功率56%时,液相体积传质系数最大,气体鼓泡和液体射流的协同作用最强。  相似文献   

6.
曹俊雅  张绅  张涛  雍玉梅  杨超 《化工学报》2019,70(10):3914-3923
上流式反应器设置在固定床渣油加氢反应器前有利于提高渣油原料适用性,延长装置运行时间。实验研究了上流式反应器气液相间传质,采用五齿柱形氧化铝催化剂模拟工业催化剂颗粒,水溶液模拟渣油,空气模拟氢气,采用无氧水物理吸收和亚硫酸钠化学吸收的方法,测定了在高气液比的条件下上流式反应器床层气液相间传质特性实验。考察了表观气速、表观液速、填料粒径、内构件、催化剂级配和床层高径比对液相体积传质系数和气液相界比表面积的影响规律。实验数据表明,液相体积传质系数随着气、液速的增大而增大;随填料颗粒增大而减小;在床层内安装合适的内构件或增大反应器高径比,能够促进气液相间传质。基于实验数据拟合了适合上流式反应器液相体积传质系数和气液相界比表面积的经验关联式,拟合误差最大分别为12%和24%;表明所建气液相间传质的经验关联式能更好地预测上流式反应器中的气液相间传质特性。  相似文献   

7.
王凯玥  马永丽  李琛  刘明言 《化工学报》2022,73(8):3529-3540
气液固微型流化床兼具微流控系统和宏观流化床的优点,具有潜在的工业应用价值,但是,其应用基础研究十分缺乏。采用床径为1.6、2.0、2.4 mm的微型流化床,平均粒径为160、190、220 μm的玻璃珠,以NaOH水溶液吸收CO2气体为气液传质研究物系,在三相流动研究的基础上,考察了表观气速、表观液速、床径、粒径等对三相微型流化床气液体积传质系数的影响。结果表明:给定其他条件,增加表观气速和表观液速,均使气液体积传质系数增大;表观气速主要改变气含率和气液相界面积,而表观液速主要改变液相传质系数;床径减小,气液相界面积和气液体积传质系数都有所增加;在气液两相微型鼓泡塔中加入固体颗粒,形成三相分散鼓泡流型,当其固含率在0.15~0.30范围内,可显著增强气液传质,其气液体积传质系数是气液微鼓泡塔的1.1~1.5倍;与宏观流化床相比,相同条件下微型床的相界面积为它的5~10倍,是微型流化床具有更大体积传质系数的主要影响因素。  相似文献   

8.
王凯玥  马永丽  李琛  刘明言 《化工学报》1951,73(8):3529-3540
气液固微型流化床兼具微流控系统和宏观流化床的优点,具有潜在的工业应用价值,但是,其应用基础研究十分缺乏。采用床径为1.6、2.0、2.4 mm的微型流化床,平均粒径为160、190、220 μm的玻璃珠,以NaOH水溶液吸收CO2气体为气液传质研究物系,在三相流动研究的基础上,考察了表观气速、表观液速、床径、粒径等对三相微型流化床气液体积传质系数的影响。结果表明:给定其他条件,增加表观气速和表观液速,均使气液体积传质系数增大;表观气速主要改变气含率和气液相界面积,而表观液速主要改变液相传质系数;床径减小,气液相界面积和气液体积传质系数都有所增加;在气液两相微型鼓泡塔中加入固体颗粒,形成三相分散鼓泡流型,当其固含率在0.15~0.30范围内,可显著增强气液传质,其气液体积传质系数是气液微鼓泡塔的1.1~1.5倍;与宏观流化床相比,相同条件下微型床的相界面积为它的5~10倍,是微型流化床具有更大体积传质系数的主要影响因素。  相似文献   

9.
上流式反应器设置在固定床渣油加氢反应器前有利于提高渣油原料适用性,延长装置运行时间。实验研究了上流式反应器气液相间传质,采用五齿柱形氧化铝催化剂模拟工业催化剂颗粒,水溶液模拟渣油,空气模拟氢气,采用无氧水物理吸收和亚硫酸钠化学吸收的方法,测定了在高气液比的条件下上流式反应器床层气液相间传质特性实验。考察了表观气速、表观液速、填料粒径、内构件、催化剂级配和床层高径比对液相体积传质系数和气液相界比表面积的影响规律。实验数据表明,液相体积传质系数随着气、液速的增大而增大;随填料颗粒增大而减小;在床层内安装合适的内构件或增大反应器高径比,能够促进气液相间传质。基于实验数据拟合了适合上流式反应器液相体积传质系数和气液相界比表面积的经验关联式,拟合误差最大分别为12%和24%;表明所建气液相间传质的经验关联式能更好地预测上流式反应器中的气液相间传质特性。  相似文献   

10.
气升式环流反应器强制振荡周期对传质影响的研究   总被引:2,自引:0,他引:2  
在同一反应器中比较了不同振荡周期下的气液传质特性,为最优强制振荡周期的确定提供了实验依据和分析基础。选择体积传质系数及气含率作为传质研究的主要评价指标,实验结果表明,动态操作下的传质效果明显优于稳态,而不同振荡周期传质效果也大不一样。在0.8~2.4m3h-1的气速范围内,由静压力、导流管顶部截面流体速度、全床气含率(及传质系数)周期性变化所确定的振荡周期TP、TV、TK比稳态操作下的全床平均传质系数分别提高了3.92%~27.3%,2.35%~24.5%,28.2%~43.3%。由反应器内全床平均气含率或传质系数确定的振荡周期TK是最佳振荡周期。  相似文献   

11.
The hydrogenation of 2‐ethylanthraquinone (EAQ) to 2‐ethylanthrahydroquinone (EAHQ) was carried out under Taylor flow in single square channel monolith reactors. The two opening ends of opaque reaction channel were connected with two circular transparent quartz‐glass capillaries, where Taylor flow hydrodynamics parameters were measured and further used to obtain practical flow state of reactants in square reaction channels. A carefully designed gas‐liquid inlet mixer was used to supply steady gas bubbles and liquid slugs with desired length. The effects of various operating parameters, involving superficial gas velocity, superficial liquid velocity, gas bubble length, liquid slug length, two‐phase velocity and temperature, on EAQ conversion were systematically researched. Based on EAQ conversion, experimental overall volumetric mass transfer coefficients were calculated, and also studied as functions of various parameters as mentioned earlier. The film model, penetration model, and existing semi‐empirical formula were used to predict gas‐solid, gas‐liquid, and liquid‐solid volumetric mass transfer coefficients in Taylor flow, respectively. The predicted overall volumetric mass transfer coefficients agreed well with the experimental ones. © 2009 American Institute of Chemical Engineers AIChE J, 2009  相似文献   

12.
缩放型导流筒气升式内环流生物反应器流体力学与传质特性   总被引:15,自引:0,他引:15  
从气相含率、液体循环速度和体积氧传质系数方面研究缩放型导流筒气升式内环流生物反应器内的流体力学与传质特性。实验结果表明,与传统圆柱形导流筒相比较,缩放型导流筒气相含率和体积氧传质系数分别提高8%和10%以上。气相含率和体积氧传质系数随固含率的增加而提高,液体循环速度随固含率的增加而减小;同一内管反应器随介质粘度的增加,体积氧传质系数减小。此外还在Higbie穿透理论和Kolomogoroff各向同  相似文献   

13.
The mass transfer of oxygen between air and water has been studied in a bubble column over wide ranges of liquid and gas velocity. An oxygen probe was used to map the steady-state liquid phase concentration of oxygen throughout the column.At any given point in the column, the oxygen concentration increased with gas velocity. Minima were observed in plots of concentration against liquid velocity.Two distinct absorption regions were observed. Close to the distributor the concentration decreased rapidly with height and volumetric mass transfer coefficients ranged from about 0.2 to 2.1 s?1. These high values were attributed to enhanced mass transfer due to turbulence induced by the liquid and gas jets in the grid region. In the bulk of the column, axial concentration gradients were much smaller and the mass transfer coefficients were up to two orders of magnitude lower than in the grid region.  相似文献   

14.
The flow and mass transfer characteristics of CO2 absorption in different liquid phases in a microchannel were studied by numerical simulation. The mixture gas phase contained 5 vol% CO2 and 95 vol% N2 , and the different liquid phases were water, ethanol solution, 0.2 M monoethanolamine solution, and 0.2 M NaOH solution, respectively. Based on the permeation theory, the distribution of velocity and concentration in the slug flow was obtained by local simulation of flow and mass transfer coupling and was described in depth. The influence of contact time and bubble velocity on the mass transfer of the whole bubble was highlighted. The volumetric mass transfer coefficient on the bubble cap and liquid film, CO2 absorption rate, and enhancement factor were calculated and analyzed. The results showed that the volumetric mass transfer coefficients of chemical absorption were ~3 to 10 times that of physical absorption and the CO2 was absorbed more completely in chemical absorption. The new empirical correlations for predicting the mass transfer coefficient of the liquid phase were proposed respectively in physical absorption and chemical absorption, which were compared with the empirical formulas in the literature. The volumetric mass transfer coefficients obtained by predictive correlations are in good agreement with those obtained by simulation in this paper. This work made a basic prediction for CO2 absorption in microchannel and provides a foundation for later experimental research.  相似文献   

15.
Gas—liquid mass transfer has been investigated in gas—liquid-solid three-phase stirred tank reactors with Newtonian and non-Newtonian liquids. Volumetric mass transfer coefficients and gas hold-ups were measured in a 0.2 m i.d. stirred tank reactor and the effects of low-density polymeric particles (ρs, =1030 and 1200 kg/m3; up to 15 vol%) on gas—liquid mass transfer were examined. The volumetric mass transfer coefficients in water were found to decrease due to the presence of solid particles at constant impeller speed and superficial gas velocity. On the other hand, solids loading led to higher mass transfer rates in non-Newtonian carboxymethyl cellulose aqueous solutions. Our previously proposed model for mass transfer in gas—liquid two-phase systems was extended to gas—liquid—solid three-phase systems. Reasonable agreement was found between the predictions of the proposed model and the experimental data.  相似文献   

16.
A comparison of the values of interfacial area in cocurrent downward flow of gas and liquid with those obtained in upward flow revealed very little difference.Volumetric as well as true liquid side mass transfer coefficients in downflow were found to be several times lower than in upflow. Only in the smallest 10 mm tube a dependence of the mass transfer coefficient on the gas flow rate could be detected, no effect of the gas velocity was observed in the 15 and 20 mm tubes. A correlation for the liquid side mass transfer coefficient was obtained in terms of the Reynolds number of the film.The volumetric gas side mass transfer coefficient in upflow was generally independent on the liquid flow rate, except at high gas velocities in the two smaller tubes. Correlations were obtained for the volumetric mass transfer coefficient in terms of the specific rate of energy dissipation, and of the true mass transfer coefficient in terms of dimensionless groups. Much lower values were obtained for the gas side mass transfer coefficient in downflow. Only the data for the 10 mm tube could be correlated with some success by the formulas proposed for upflow.  相似文献   

17.
1 INTRODUCTION Magnetically stabilized beds (MSB) exhibit an unique combination of packed-bed and fluidized-bed properties. Gas-liquid-solid (G-L-S) three-phase MSB has recently attracted more attention in the field of biotechnology processes (such as bioseparation or immobilized enzyme systems) and chemical engi- neering(such as the hydrogenation reaction system). The interphase mass transfer behavior plays an im- portant role in the optimal operation of practical MSB. However, many…  相似文献   

18.
The effects of liquid (0.03-0.12 m/s) and as (0.04-0.20 m/s) velocities, and particle size (0-8.0 mm) on the volumetric mass transfer coefficients at the grid zone have been determined in a 0.152 mI.D. x 1.8 m high Plexiglas column. The volumetric mass transfer coefficient in the grid zone increases with increasing gas velocity and particle size. However, the coefficient exhibits a maximum value at an optimum bed porosity condition. The volumetric mass transfer coefficients in terms of the Sherwood number in three-phase fluidized beds have been correlated with the Schmidt number and particle Reynolds number which is related to the energy dissipation rate in the beds based on the local isotropic turbulence theory. Also, the coefficient has been correlated with the experimental variables.  相似文献   

19.
The hydrodynamics and mass transfer characteristics of a lab-scale jet bubbling reactor(JBR) including the gas holdup, volumetric mass transfer coefficient and specific interfacial area were assessed experimentally investigating the influence of temperature, p H and superficial gas velocity. The reactor diameter and height were 11 and 30 cm,respectively. It was equipped with a single sparger, operating at atmospheric pressure, 20 and 40℃, and two p H values of 3 and 6. The height of the liquid was 23 cm, while the superficial gas velocity changed within 0.010–0.040 m·s~(-1) range. Experiments were conducted with pure oxygen as the gas phase and saturated lime solution as the liquid phase. The liquid-side volumetric mass transfer coefficient was determined under unsteady-state oxygen absorption in a saturated lime solution. The gas holdup was calculated based on the liquid height change, while the specific interfacial area was obtained by a physical method based on the bubble size distribution(BSD) in different superficial gas velocities. The results indicated that at the same temperature but different p H, the gas holdup variation was negligible, while the liquid-side volumetric mass transfer coefficient at the p H value of 6 was higher than that at the p H = 3. At a constant p H but different temperatures, the gas holdup and the liquid-side volumetric mass transfer coefficients at 40℃ were higher than that of the same at 20℃. A reasonable and appropriate estimation of the liquid-side volumetric mass transfer coefficient(kla) in a pilot-scale JBR was provided which can be applied to the design and scale-up of JBRs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号