共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
以前期构建的产Bacilluscirculansβ-半乳糖苷酶重组大肠杆菌E.coli BL21(DE3)/pET-20b-lac为菌种,进行摇瓶发酵诱导培养,培养24 h胞外上清酶活达15 U/mL。利用制备的β-半乳糖苷酶粗酶液进行酶转化实验。优化了酶转化条件,考查了初始pH、反应温度、乳糖质量浓度、加酶量和反应时间等因素对低聚半乳糖产率的影响。确定最优转化条件为:初始pH 6.5、反应温度55℃,起始乳糖质量浓度为700 g/L,加酶量为8 U/mL。在此条件下反应16 h,低聚半乳糖转化率可达57%。 相似文献
4.
从新疆高寒冻土、冷冻乳制品及生乳中分离到101株耐冷菌,利用低温β-半乳糖苷酶筛选模型,获得1株低温酶高产菌株L2004,根据其形态特征、生理生化特性,鉴定为短芽孢杆菌属(BrevibacillusShida,1996)。在以乳糖为主要碳源的发酵培养基中,L2004菌最适生长温度和最适产酶温度分别为20、15℃。该低温酶的最适pH值为6.5,最适作用温度为33℃,0℃相对酶活为总酶活的25%,在0~0℃范围内,具有较好的稳定性。不同金属离子对β-半乳糖苷酶活性的影响为:Mn2 >Mg2 >K >Na >Ca2 >Fe2 >Hg2 >Cu2 >Zn2 。Mn2 、Mg2 增强酶活,而Hg2 、Cu2 、Zn2 抑制酶活。该酶Km值为5.29mmol/L,具低温酶特性。 相似文献
5.
主要论述了用生物技术生产β-半乳糖苷酶以及此酶在生物技术各个方面的应用。报道了β-半乳糖苷酶在研究和应用上的一些新领域和新进展。 相似文献
6.
耐热β-半乳糖苷酶相比酵母来源的中温乳糖酶用于低乳糖牛奶的生产具有潜在的优越性。在已将来源于嗜热脂肪芽孢杆菌的耐热β-半乳糖苷酶基因(bgaB)克隆入枯草芽孢杆菌得到重组菌WB600/pMA5-bgaB后,对此重组菌的发酵条件进行了研究。重组菌WB600/pMA5-bgaB在发酵过程中具有良好的遗传稳定性,可溶性淀粉和胰蛋白胨是重组菌生长和酶活表达的适合碳源和氮源。WB600/pMA5-bgaB适宜的摇瓶培养条件为接种量3%~5%,装液量30~50/250 mL(三角瓶),起始pH7.0,摇床转速220r/min。在7L反应器中进行分批发酵,研究表明,pH调控和溶氧控制对提高工程菌发酵产酶具有明显帮助,pH控制在7.0,溶氧控制在50%可提高发酵酶活;补料培养后菌体密度OD_(600)可达到47,酶活达到37.5U/mL,比在初始条件下提高了10倍。 相似文献
7.
对来自新疆天山冻土的Rahnella sp.R3所产的胞内低温β-半乳糖苷酶进行纯化,并对其酶学性质进行研究。采用硫酸铵分级沉淀、Phenyl Sepharose CL-4B疏水层析、Q Sepharose High Performance阴离子交换层析、Sephacryl S-200High Resolution凝胶过滤层析,得到电泳纯酶。酶的活性回收率为21.3%,纯化倍数为35.6,比酶活由1.28U/mg提高到45.54U/mg。SDS-PAGE电泳显示其表观分子量为57.3kDa。酶学性质研究表明,该酶最适反应温度为45℃,在15℃时的酶活为最高酶活的40%,4℃时的酶活为最高酶活的23%。该酶对热敏感,45℃保温45min酶活全部丧失。纯酶的最适pH为7.0,在pH 6.5~7.5时保持稳定。5 mmol/L Na+、Ca2+、Cu2+、Al 3+、Zn2+对酶活力有不同程度的抑制作用,其中Al 3+抑制作用最强,Na+、Ca2+抑制作用不明显。5 mmol/L Mg2+、K+对酶活力具有促进作用,其中Mg2+促进作用较强,使酶活提高到1.19倍。25℃以ONPG为底物的Vmax,Km值分别为7.19mol/(min·mL)、4.64mmol/L。 相似文献
8.
一株产高温β-半乳糖苷酶低温菌株及其酶学性质研究 总被引:2,自引:0,他引:2
从101株低温菌中发现了1株产高温β-半乳糖苷酶菌株G2005,依据形态特征与生理生化反应特性,参照《常见细菌鉴定手册》将其鉴定为乳球菌Lactococcus sp.。该菌株高温β-半乳糖苷酶的最适pH值为6.5,最适作用温度为50℃,65℃相对酶活为总酶活的19%,在30~60℃范围内,具有较好的稳定性。不同金属离子对β-半乳糖苷酶活性的影响为:Mg2+>Na+>K+>Fe2+>Ca2+>Zn2+>Mn2+>Hg2+>Cu2+。Mg2+增强酶活,而Hg2+、Cu2+、Mn2+抑制酶活。经测定该酶Km值为96.8 mmol/L,具高温酶特性。该菌株的最适产酶条件分别为30℃培养48h~60h,培养基初始pH 6.5,培养基乳糖浓度为2%。 相似文献
9.
10.
β-半乳糖苷酶,又称乳糖酶,广泛存在于细菌、真菌、酵母菌等微生物中,主要功能是乳糖水解和合成低聚半乳糖。利用β-半乳糖苷酶生产低乳糖牛奶等乳制品成为解决乳糖不耐受问题最有效的途径,然而常用的商业化β-半乳糖苷酶的最适反应温度大多较高,对pH的要求比较严格,存在生产成本较高、消耗能量高等问题。适冷β-半乳糖苷酶在低温下也具有较高的酶活性,广泛应用于食品行业中,尤其在乳品工业。在低温下水解乳糖,生产低乳糖或无乳糖乳制品,供乳糖不耐受者食用,可降低成本、节约能源,具有重要意义。该文综述了β-半乳糖苷酶的微生物来源、特性、催化特性的研究现状,对适冷β-半乳糖苷酶的来源、特性、耐冷机制及工业化应用进行了系统阐述,并对其前景进行了展望。 相似文献
11.
12.
以乳糖为惟一碳源,5-溴-4-氯-3-吲哚- β -D-半乳糖苷(X-gal)为显色剂,从土壤中筛选出10株产β- 半乳糖苷酶较高、生长较好的菌株.在30 ℃下发酵产酶,测定邻硝基苯- β- D-半乳糖苷(ONPG)水解能力.在50 mmol/L磷酸钾缓冲液(pH 7.0)中,加入400 g/L乳糖和200 g/L果糖,并分别添加10株菌所产β- 半乳糖苷酶, 至酶活为400 U/L,37 ℃下反应8 h,经高效液相色谱分析,编号为2-1样品中含有乳果糖.通过形态特征和16S rDNA 序列分析,鉴定菌株2-1为节杆菌属. 相似文献
13.
14.
研究了嗜热脂肪芽孢杆菌C953产β-半乳糖苷酶的发酵条件.研究得出C953产酶适宜培养基为:牛肉膏、大豆蛋白胨、NaCl、K2HPO4、KH2PO4;产酶的适宜发酵条件为:培养温度50℃,接种量10%,1000mL三角瓶的装液量200mL,初始pH 7.0,摇床转速220r/min,培养时间24h.发酵液中β-半乳糖苷酶酶活力可达4.39NLU/mL.十二烷基磺酸钠-聚丙烯酰胺凝胶电泳法测定表明,β-半乳糖苷酶由分子质量为104.9kDa和114.3kDa的亚基组成. 相似文献
15.
研究了嗜热脂肪芽孢杆菌C953产β-半乳糖苷酶的发酵条件。研究得出C953产酶适宜培养基为:牛肉膏、大豆蛋白胨、NaCl、K2HPO4、KH2PO4;产酶的适宜发酵条件为:培养温度50℃,接种量10%,1000mL三角瓶的装液量200mL,初始pH7.0,摇床转速220r/min,培养时间24h。发酵液中β-半乳糖苷酶酶活力可达4.39NLU/mL。十二烷基磺酸钠-聚丙烯酰胺凝胶电泳法测定表明,β-半乳糖苷酶由分子质量为104.9kDa和114.3kDa的亚基组成。 相似文献
16.
壳聚糖固定β-半乳糖苷酶的研究 总被引:4,自引:0,他引:4
以壳聚糖微球为载体,戊二醛为交联剂,固定β-半乳糖苷酶,对β-半乳糖苷酶的固定化条件及固定化酶的各种性质进行了研究,确定了酶固定的最适条件为:用pH6.5的P—E-M缓冲液浸泡10h,25℃壳聚糖微球与0.5%戊二醛交联12h以上,4℃下酶与壳聚塘微球固定12h以上酶活力回收可迭67%。固定化酶的最适温度为40℃左右,最适pH7.0。通过双倒数求回归方程,求得动力学参数Km值为0.613μmol/ml。固定化酶稳定性好,可以重复使用。 相似文献
17.
以产β-半乳糖苷酶嗜热脂肪芽孢杆菌Bacillus stearothermophilus XG24为原始菌株,先后经微波辐照、亚硝基胍(NTG)诱变,选育获得1株高产突变菌株XGN52。产酶量比原始菌株提高了115.92%,其最大产酶量为31.59U/mL。经过10次传代实验,稳定性良好。突变菌株XGN52最适发酵时间36h,初始pH7.0,温度42℃。与原始菌株相比,突变株XGN52的产酶特性发生了改变。研究结果显示采用微波和NTG复合诱变对提高β-半乳糖苷酶产量具有显著的效果。 相似文献
18.
β-半乳糖苷酶催化制备甜菊双糖苷 总被引:1,自引:0,他引:1
甜菊双糖苷是具备某些生理活性的萜类化合物,同时也是制备一些抗结核、抗菌药物的中间体。本文用单因素实验考察了β-半乳糖苷酶催化水解甜菊苷制备甜菊双糖苷的工艺条件,结果表明:在反应温度40℃,pH7.0,底物浓度25mg/mL,加酶量8440U/gSt,水解时间12h,甜菊苷转化率为98.4%,甜菊双糖苷产率达94.9%。 相似文献
19.