首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
A field experiment was conducted to investigate the effects of winter management and N fertilization on N2O emission from a double rice-based cropping system. A rice field was either cropped with milk vetch (plot V) or left fallow (plot F) during the winter between rice crops. The milk vetch was incorporated in situ when the plot was prepared for rice transplanting. Then the plots V and F were divided into two sub-plots, which were then fertilized with 276 kg urea-N ha–1 (referred to as plot VN and plot FN) or not fertilized (referred to as plot VU and plot FU). N2O emission was measured periodically during the winter season and double rice growing seasons. The average N2O flux was 11.0 and 18.1 g N m–2 h–1 for plot V and plot F, respectively, during winter season. During the early rice growing period, N2O emission from plot VN averaged 167 g N m–2 h–1, which was eight- to fifteen-fold higher than that from the other three treatments (17.8, 21.0 and 10.8 g N m–2 h–1 for plots VU, FN, and FU, respectively). During the late rice growing period, the mean N2O flux was 14.5, 11.1, 12.1 and 9.9 g N m–2 h–1 for plots VN, VU, FN and FU, respectively. The annual N2O emission rates from green manure-double rice and fallow-double rice cropping systems were 3.6 kg N ha–1 and 1.3 kg N ha–1, respectively, with synthetic N fertilizer, and were 0.99 kg N ha–1 and 1.12 kg N ha–1, respectively, without synthetic N fertilizer. Generally, both green manure N and synthetic fertilizer N contribute to N2O emission during double rice season.  相似文献   

2.
We studied nitrous oxide (N2O) emissions every growing season (April to October) for 6 years (19952000), in a Gray Lowland soil cultivated with onions in central Hokkaido, Japan. Emission of N2O from the onion field ranged from 0.00 to 1.86 mgN m–2 h–1. The seasonal pattern of N2O emission was the same for 6 years. The largest N2O emissions appeared near harvesting in August to October, and not, as might be expected, just after fertilization in May. The seasonal patterns of soil nitrate (NO3 ) and, ammonium (NH4 +) levels and the ratio of N2O to NO emission indicated that the main process of N2O production after fertilization was nitrification, and the main process of N2O production around harvest time was denitrification. N2O emission was strongly influenced by the drying–wetting process of the soil, as well as by the high soil water content. The annual N2O emission during the growing season ranged from 3.5 to 15.6 kgN ha–1. The annual nitrogen loss by N2O emission as a percentage of fertilizer-N ranged from 1.1 to 6.4%. About 70% of the annual N2O emission occurred near harvesting in August to October, and less than 20% occurred just after fertilization in May to July. High N2O fluxes around the harvesting stage and a high proportion of N2O emission to total fertilizer-N appeared to be probably a characteristic of the study area located in central Hokkaido, Japan.  相似文献   

3.
The quantities of nitrogen, phosphorus and potassium supplied by an average African soil cleared from bush fallow, assuming no losses, were approximated. Values ranged from 23 to 120 Kg N ha–1, 1.8 to 12 Kg P ha–1, 47 to 187 Kg K ha–1, depending on type of fallow, length of fallow, drainage and extent of depletion of native supplies. Additional amounts of 4 to 5 Kg N ha–1, 4 to 6 Kg P ha–1 and 14 to 20 Kg K ha–1 are obtained from the ash.Using crop nutrient removal data and approximate efficiencies of native and fertilizer N, P and K, fertilizer requirements at the reconnaissance level were estimated for selected target yields. For newly cleared uplands at cropping/fallow ratio of 2:7, N fertilizer requirements for cassava (30 t ha–1), maize (4 t ha–1), and sweet potato (16 t ha–1), were 138, 98, 42 kg ha–1 respectively. Wetland rice (4 t ha–1) required 55 kg N ha–1. Corresponding P fertilizer requirements for cassava, maize, sweet potato, upland rice (1.5 t ha–1) and ground-nut (1 t ha–1) were 190, 80, 30, 30 and 16 kg P ha–1 respectively. Wetland rice required 83 kg P ha–1. Substantial residual values of applied P are to be expected. Cassava required 60 kg ha–1 of K on newly cleared land. In soils of lowered nutrient status higher N, P, and K fertilizer requirements were indicated for all crops.Land use data from Sierra Leone were used to illustrate how the total quantities of N, P and K fertilizers in a country in the forest zone of Africa can be approximated. Fertilizer needs in Sierra Leone were in decreasing order P > N K. N, P and K requirements were estimated to be 10,000 t, 20,000 t and 4,000 t respectively. The nutrient balance sheet method described in this paper is a useful tool to estimate the order of magnitude of fertilizer requirement at selected target yields for countries in Africa.  相似文献   

4.
Two field experiments were conducted in a rice–fallow–rice cropping sequence during consecutive dry and wet seasons of 1997 on a Fluvic Tropaquept to determine the fate and efficiency of broadcast urea in combination with three residue management practices (no residue, burned residue and untreated rice crop residue). Ammonia volatilization losses from urea (70 kg N ha–1) broadcast into floodwater shortly after transplanting for 11 d were 7, 12 and 8% of the applied N from no residue, burned residue and residue treated plots, respectively. During that time, the cumulative percent of N2 + N2O emission due to urea addition corresponded to 10, 4.3 and nil, respectively. The 15N balance study showed that at maturity of the dry season crop, fertilizer N recovery by the grain was low, only 9 to 11% of the N applied. Fifty to 53% of the applied 15N remained in the soil after rice harvest, mainly in the upper 0–5 cm layer. The unaccounted for 15N ranged from 27 to 33% of the applied N and was unaffected by residue treatments. Only 4 to 5% of the initial 15N-labeled urea applied to the dry season rice crop was taken up by the succeeding rice crop, to which no additional N fertilizer was applied. Grain yield and N uptake were significantly increased (P=0.05) by N application in the dry season, but not significantly affected by residue treatments in either season.  相似文献   

5.
Overwinter greenhouse gas fluxes in two contrasting agricultural habitats   总被引:8,自引:1,他引:8  
Mid-day field fluxes of nitrous oxide (N2O), carbon dioxide (CO2) and methane (CH4) were measured during late winter/early spring in an arable field and an adjacent fallow in southern Germany. On the arable field, 2 dm high ridges, drawn as seed-beds for potato, were exposed to mild, partly diurnal freezing–thawing. Substantially elevated N2O emission rates (6–750 µg N2O-N m–2 h–1) were observed throughout the investigation period which coincided with freezing–thawing events in the surface soil (0–5 cm). Soil temperatures in the densely vegetated fallow were more isothermal due to an insulating snow/ice cover, resulting in much lower N2O emission rates (0–57 µg N2O-N m–2 h–1). CH4 uptake rates were low in both habitats during soil frost (+2 to –7.5 µg CH4-C m–2 h–1) but increased markedly in the fallow after spring thaw. Our data suggest that N2O emission peaks may occur recurrently throughout the winter when soils are subjected to diurnal surface thawing. We concluded that microclimatic conditions strongly control N2O winter loss, thus overriding ecosystem-level differences in off-season nutrient cycling. To further characterize winter-time nutrient cycling and habitat functioning in our sites, we determined NO3 and NH4 + contents, fumigation-extractable carbon (Cmic) and nitrogen (Nmic) and enumerated protozoa and nematoda throughout the investigation period. Cmic and microbial C:N ratios in the fallow were higher in winter than during the rest of the year as indicated by a 2-year study, reflecting favorable conditions for microbial C assimilation at low temperatures in the absence of freeze–thaw perturbation. In the arable soil, Cmic contents were significantly reduced during soil freezing but recovered quickly upon warming of the soil. Dynamics of Cmic in the arable soil were paralleled by protozoan biomass and transient shifts in functional composition of the nematode community, indicating that microfaunal predation played an important role in nutrient cycling after freeze–thaw perturbation. Only minor microfaunal dynamics were observed in the climatically more stable fallow, essentially confirming the absence of perturbation at this site. Our findings provide strong evidence that overwinter N2O formation is regulated by both the physical freeze–thaw susceptibility of the soil and the ecological functioning of the habitat.  相似文献   

6.
A case study on the nutrient input-output budget of slash and burn agriculture was carried out in Northeast-Pará, Brazil, where such a land-use system has been practised for about 100 years. A common cropping period lasts for two years and the fields lie fallow for 4 to 8 years. We quantified rates of deposition, fertilization, and losses due to the burn, harvest and leaching. Six fields of different phases in the rotational cycle were under study during a 19 month period. During the fallow period, the input of Na, K, Mg, N, P and S via deposition exceeded the estimated losses with the seepage water. The Ca budget was almost balanced. The balance of fields in the transition from the fallow to the cropping phase was negative for Na, K, Ca, Mg, N, and S. The P balance was positive when NPK fertilizer was applied, and negative without fertilizer application. The nutrient balance for K, Mg, Ca, N, and P was also negative on the field in transition from the cropping to the fallow period. The nutrient budget for an entire land-use cycle of 9 years was estimated by the false time series approach. In the case of an NPK fertilization during the cropping period there were net losses of 75 kg K ha–1, 125 kg Ca ha–1, 16 kg Mg ha–1, 285 kg N ha–1 and 13 kg S ha–1. Na (86 kg ha–1) and P (11 kg ha–1) were accumulated. The harvest was the most important flux for the K (61%) and P (62%) output. The element transfer into the atmosphere during the burn caused the main losses of N (60%), S (65%), Ca (58%) and Mg (41%). The most important path of Na loss was leaching (92%). The net K losses were severe as they represented 45% of the K store found extractable in the soil down to 1m depth and in the above ground biomass. The presented results may be useful in planning a sustainable and environmentally protective method of land-use within a shifting cultivation system. It is strongly recommended that slash burning be abandoned in order to keep the nutrients in the ecosystem.  相似文献   

7.
The DAISY soil–plant–atmosphere model was used to simulate crop production and soil carbon (C) and nitrogen (N) turnover for three arable crop rotations on a loamy sand in Denmark under varying temperature, rainfall, atmospheric CO2 concentration and N fertilization. The crop rotations varied in proportion of spring sown crops and use of N catch crops (ryegrass). The effects on CO2 emissions were estimated from simulated changes in soil C. The effects on N2O emissions were estimated using the IPCC methodology from simulated amounts of N in crop residues and N leaching. Simulations were carried out using the original and a revised parameterization of the soil C turnover. The use of the revised model parameterization increased the soil C and N turnover in the topsoil under baseline conditions, resulting in an increase in crop N uptake of 11 kg N ha–1 y–1 in a crop rotation with winter cereals and a reduction of 16 kg N ha–1 y–1 in a crop rotation with spring cereals and catch crops. The effect of increased temperature, rainfall and CO2 concentration on N flows was of the same magnitude for both model parameterizations. Higher temperature and rainfall increased N leaching in all crop rotations, whereas effects on N in crop residues depended on use of catch crops. The total greenhouse gas (GHG) emission increased with increasing temperature. The increase in total GHG emission was 66–234 kg CO2-eq ha–1 y–1 for a temperature increase of 4°C. Higher rainfall increased total GHG emissions most in the winter cereal dominated rotation. An increase in rainfall of 20% increased total GHG emissions by 11–53 kg CO2-eq ha–1 y–1, and a 50% increase in atmospheric CO2 concentration decreased emissions by 180–269 kg CO2-eq ha–1 y–1. The total GHG emissions increased considerably with increasing N fertilizer rate for a crop rotation with winter cereals, but remained unchanged for a crop rotation with spring cereals and catch crops. The simulated increase in GHG emissions with global warming can be effectively mitigated by including more spring cereals and catch crops in the rotation.  相似文献   

8.
Methane (CH4) emissions were determined from 1993 to 1998 using an automated closed chamber technique in irrigated and rainfed rice. In Jakenan (Central Java), the two consecutive crops encompass a gradient from low to heavy rainfall (wet season crop) and from heavy to low rainfall (dry season crop), respectively. Rainfed rice was characterized by very low emission at the onset of the wet season and the end of the dry season. Persistent flooding in irrigated fields resulted in relatively high emission rates throughout the two seasons. Average emission in rainfed rice varied between 19 and 123 mg CH4 m–2 d–1, whereas averages in irrigated rice ranged from 71 to 217 mg CH4 m–2 d–1. The impact of organic manure was relatively small in rainfed rice. In the wet season, farmyard manure (FYM) was completely decomposed before CH4 emission was initiated; rice straw resulted in 40% increase in emission rates during this cropping season. In the dry season, intensive flooding in the early stage promoted high emissions from organically fertilized plots; seasonal emissions of FYM and rice straw increased by 72% and 37%, respectively, as compared with mineral fertilizer. Four different rice cultivars were tested in irrigated rice. Average emission rates differed from season to season, but the total emissions showed a consistent ranking in wet and dry season, depending on season length. The early-maturing Dodokan had the lowest emissions (101 and 52 kg CH4 ha–1) and the late-maturing Cisadane had the highest emissions (142 and 116 kg CH4 ha–1). The high-yielding varieties IR64 and Memberamo had moderately high emission rates. These findings provide important clues for developing specific mitigation strategies for irrigated and rainfed rice.  相似文献   

9.
Agricultural soils are a major source of the greenhouse gas nitrous oxide (N2O). Nitrous oxide emission models can be used to predict the effectiveness of N2O mitigation strategies; however, these models require rigorous testing before they can be used with confidence. Expert-N, a modular process based N2O emission model, was tested to determine its ability at predicting nitrogen (N) cycling in the soil–plant–atmosphere system under Canadian agroclimatic conditions. Ancillary data and N2O emissions were collected/measured from a corn cultivated clay-loam soil that was under different tillage and red clover treatments. The treatments were conventional till (CT) with and without red clover (rc) underseeded in the previous year's wheat crop (CT-Crc and CT-C, respectively), and no till (NT) with and without red clover underseeded in the previous year's wheat crop (NT-Crc and NT-C, respectively). Expert-N provided good estimates of N2O emissions, and predictions correlated well (positive) with the measured emissions (r 2 0.55–0.83). There was no statistically significant difference between measured and predicted daily emissions. The predicted emissions, integrated over the growing season (25 May–4 October, 1995), were 0.56, 0.57, 0.62, and 0.62 kg N2O-N ha–1 for CT-C, CT-Crc, NT-C, and NT-Crc, respectively. The measured emissions over the same period were 1.29, 1.07, 0.96, and 1.04 kg N2O-N ha–1 for CT-C, CT-Crc, NT-C, and NT-Crc, respectively. The modelled emissions underestimated the integrated measured emissions by 35–55%; however, the integrated measured emissions had an estimated uncertainty of ±35%. The model provided good predictions of the soil temperatures, moisture contents, and soil nitrate levels with no significant difference from the measured data. Correlations between modelled and measured values for these soil properties in the first 30 cm soil layer were positive and high with r 2 0.71–0.93.  相似文献   

10.
In the 1994 and 1995 cropping seasons, fluted pumpkin(Telfairia occidentalis Hook. F) was intercropped withbanana (Musa AAA) or grown alone. The flutedpumpkin, whether intercropped or grown alone, received 30 to 120 kgNha–1 in the first cropping season and 80 to320kg N ha–1 in the following season. Fluted pumpkinplants grown alone or which did not receive N served as controls. The objectiveof the study was to determine the N requirement of fluted pumpkin when grownalone or as an intercrop. Intercropping significantly decreased vine yield andnumber of fruits set in the 1994 cropping season, but it did not significantlyinfluence number of fruits set in the 1995 cropping season. In both croppingseasons, intercropping had no significant effect on fruit yield. In the 1994cropping season, linear trends were significant for the response of vine yieldto N fertilization. In the 1995 cropping season, quadratic trends weresignificant for the response of fruit set and fruit yield to N fertilization.There was no interaction between cropping systems and N fertilization. Based oncash advantage due to fertilizer application values, 160 kg Nha–1 was considered optimal for dual purpose (vegetable+ seed) production of fluted pumpkin.  相似文献   

11.
N2O emission from cropland in China   总被引:1,自引:0,他引:1  
Based on the regionalization of uplands and paddy fields in China, the crop intensity in each region and the available field measurements, N2O emission from cropland in China in 1995 was estimated to be 398 Gg N, in which, 310 Gg N was from uplands, accounting for 78% of the total. 88 Gg N–N2O was emitted from paddy fields with 35 Gg N emitted during the rice growing season and 53 Gg N emitted during upland crop season. N2O emission from upland and from paddy field during upland land crop season accounted for 91% of the total emission.  相似文献   

12.
Experiments were conducted in paddy fields at Shiga and Chiba Prefectures to study the effects of controlled-release coated urea (N-LP100) on soil microbial biomass and N uptake of rice plants by the 15N-tracer technique, during one cropping season. Three field fertilizer treatments (Zero N: 0 kgN ha–1, 15N-LP100: 64 kg N ha–1 and 15NH4Cl: 100 kg N ha–1) were set-up in the Shiga field experiment. After transplanting in the paddy fields at Shiga and Kashiwa (Chiba), a number of rice hills with standard growth were selected randomly and enclosed by polyacryl-plastic frames designated as microplots. 15N-LP100 (64 kg N ha–1) was applied in the Shiga and Kashiwa microplot experiments and the Shiga field experiment as deep-side placement (5 cm away from rice hill and 5 cm soil depth). Total N uptake of rice plants was analyzed in the course of plant growth. In addition, soils from the field fertilizer treatment plots and microplots (divided into 11 blocks) were taken and analyzed for microbial biomass N (BN) and biomass 15N (B15N). The results indicated that; (1) Plant N uptake from basal-applied fertilizers at the end of the study in the Shiga field experiment was 71.9 and 26.0% for 15N-LP100 and 15NH4Cl, respectively. In the Kashiwa microplot experiment, plant N uptake from applied 15N-LP100 was 51.2% at 67 days after transplanting (DAT) (2) Throughout the cropping season, BN was the highest, intermediate and the lowest for 15NH4Cl, 15N-LP100 and Zero N field experimental plots in the Shiga experiment, respectively. (3) In the micro-plot experiments, BN and B15N were generally higher in the soil block with deep-side application of 15N-LP100 compared with the other soil blocks. The deep-side placement of 15N-LP100 ensured a high efficiency of utilization of its N by rice plants. The method of 15N-LP100-placement also affected the spatial heterogeneity of microbial biomass N in the microplots.  相似文献   

13.
Nitrous oxide (N2O) emission from fertilized maize fields was measured using a closed chamber at four experimental sites in Thailand. The average measured N2O flux from unfertilized plots through crop season was 4.16 ± 1.52, 5.05 ± 1.65, 5.25 ± 1.68 and 6.74 ± 2.95 g N2O-N m-2 h-1, at Nakhon Sawan, Phra Phutthabat, Khon Kaen and Chiang Mai, respectively. Increased N2O emissions by the application of nitrogen fertilizer were 0.22–0.44, 0.19–0.38%, 0.12–0.24 and 0.08–0.15% of the applied N, respectively. Compared to other data, N2O emission rate to applied nitrogen was not significantly different between the data of Thailand and the Temperate Zone.  相似文献   

14.
The fate of nitrogen from incorporated cover crop and green manure residues   总被引:1,自引:0,他引:1  
Nitrogen retention and release following the incorporation of cover crops and green manures were examined in field trials in NE Scotland. These treatments reduced the amounts of nitrate-N by between 10–20 kg ha-1 thereby lowering the potential for leaching and gaseous N losses. However, uptake of N by overwintering crops was low, reflecting the short day-lengths and low soil temperatures associated with this part of Britain. Vegetation that had regenerated naturally was as effective as sown cover crops at taking up N over winter and in returning N to the soil for the following crop. Incorporation of residues generally resulted in lower mineralisation rates and reduced N2O emissions than the cultivation of bare ground, indicating a temporary immobilisation of soil N following incorporation. Emissions from incorporated cover crops ranged from 23–44 g N2O-N ha-1 over 19 days, compared with 61 g N2O-N ha-1 emitted from bare ground. Emissions from incorporated green manures ranged from 409–580 g N2O-N ha-1 over 53 days with 462 g N2O-N ha-1 emitted from bare ground. Significant positive correlations between N2O and soil NO3 - after incorporation (r=0.8–0.9; P<0.001 and r=0.1–0.4; P<0.05 for cover crops and green manures, respectively) suggest that this N2O was mainly produced during nitrification. There was no significant effect of either cover cropping or green manuring on the N content or yield of the subsequent oats crop, suggesting that N was not sufficiently limiting in this soil for any benefits to become apparent immediately. However, benefits of increased sustainability as a result of increased organic matter concentrations may be seen in long-term organic rotations, and such systems warrant investigation.  相似文献   

15.
Two field experiments were conducted in 1988 and 1989 on an acid sandy soil in Niger, West Africa, to assess the effect of phosphorus (P), nitrogen (N) and micronutrient (MN) application on growth and symbiotic N2-fixation of groundnut (Arachis hypogaea L.). Phosphorus fertilizer (16 kg P ha–1) did not affect pod yields. Addition of MN fertilizer (100 kg Fetrilon Combi 1 ha–1; P + MN) containing 0.1% molybdenum (Mo) increased pod yield by 37–86%. Nitrogen concentration in shoots at mid pod filling (72 days after planting) were higher in P + MN than in P – MN fertilizer treatment. Total N uptake increased from 53 (only P) to 108 kg N ha–1 by additional MN application. Seed pelleting (P + MoSP) with 100 g Mo ha–1 (MoO3) increased nitrogenase activity (NA) by a factor of 2–4 compared to P treatment only. The increase in NA was mainly due to increase in nodule dry weight and to a lesser extent to increase in specific nitrogenase activity (SNA) per unit nodule dry weight. The higher NA of the P + MoSP treatment was associated with a higher total N uptake (55%) and pod yield (24%). Compared to P + MoSP or P + MN treatments application of N by mineral fertilizer (60 kg N ha–1) or farmyard manure (130 kg N ha–1) increased only yield of shoot dry matter but not pod dry matter. Plants supplied with N decreased soil water content more and were less drought tolerant than plants supplied with Mo. The data suggest that on the acid sandy soils in Niger N deficiency was a major constraint for groundnut production, and Mo availability in soils was insufficient to meet the Mo requirement for symbiotic N2-fixation of groundnut.  相似文献   

16.
Annual cycles of NO, NO2 and N2O emission rates from soil were determined with high temporal resolution at a spruce (control and limed plot) and beech forest site (Höglwald) in Southern Germany (Bavaria) by use of fully automated measuring systems. The fully automated measuring system used for the determination of NO and NO2 flux rates is described in detail. In addition, NO, NO2 and N2O emission rates from soils of different pine forest ecosystems of Northeastern Germany (Brandenburg) were determined during 2 measuring campaigns in 1995. Mean monthly NO and N2O emission rates (July 1994–June 1995) of the untreated spruce plot at the Höglwald site were in the range of 20–130 µg NO-N m-2 h-1 and 3.5–16.4 µg N2O-N m-2 h-1, respectively. Generally, NO emission exceeded N2O emission. Liming of a spruce plot resulted in a reduction of NO emission rates (monthly means: 15–140 µg NO-N m-2 h-1) by 25-30% as compared to the control spruce plot. On the other hand, liming of a spruce plot significantly enhanced over the entire observation period N2O emission rates (monthly means: 6.2–22.1 µg N2O-N m-2 h-1). Contrary to the spruce stand, mean monthly N2O emission rates from soil of the beech plot (range: 7.9–102 µg N2O-N m-2 h-1) were generally significantly higher than NO emission rates (range: 6.1–47.0 µg NO-N m-2 h-1). Results obtained from measuring campaigns in three different pine forest ecosystems revealed mean N2O emission rates between 6.0 and 53.0 µg N2O-N m-2 h-1 and mean NO emission rates between 2.6 and 31.1 µg NO-N m-2 h-1. The NO and N2O flux rates reported here for the different measuring sites are high compared to other reported fluxes from temperate forests. Ratios of NO/N2O emission rates were >> 1 for the spruce control and limed plot of the Höglwald site and << 1 for the beech plot. The pine forest ecosystems showed ratios of NO/N2O emission rates of 0.9 ± 0.4. These results indicate a strong differentiating impact of tree species on the ratio of NO to N2O emitted from soil.  相似文献   

17.
An assessment of N loss from agricultural fields to the environment in China   总被引:48,自引:1,他引:48  
Using the 1997 IPCC Guidelines for National Greenhouse Gas Inventory Methodology, and statistical data from the China Agricultural Yearbook, we estimated that the direct N2O emission from agricultural fields in China in 1990 was 0.282 Tg N. Based on micro-meteorological field measurement of NH3 volatilization from agricultural fields in different regions and under different cropping systems, the total NH3 volatilization from agricultural fields in China in 1990 was calculated to be 1.80 Tg N, which accounted for 11% of the applied synthetic fertilizer N. Ammonia volatilization from agricultural soil was related to the cropping system and the form of N fertilizer. Ammonia volatilization from paddy fields was higher than that from uplands, and NH4HCO3 had a higher potential of NH3 volatilization than urea. N loss through leaching from uplands in north China accounted for 0.5–4.2% of the applied synthetic fertilizer N. In south China, the leaching of applied N and soil N from paddy fields ranged from 6.75 to 27.0 kg N ha-1 yr-1, while N runoff was between 2.45 and 19.0 kg N ha-1 yr-1.  相似文献   

18.
Long-term studies of greenhouse gas fluxes from agricultural soils in different climate regions are needed to improve the existing calculation models used in greenhouse gas inventories. The aim of this study was to obtain more information on nitrous oxide (N2O) emissions from agricultural mineral soils in the boreal region. N2O emissions were studied during 2000–2002 on two soil types in Finland, a loamy sand and a clay with plots of grass, barley and fallow. N2O fluxes were measured with static chambers throughout the year. Other parameters measured were water filled pore space (WFPS), soil mineral nitrogen concentration, soil porosity, soil temperature and depth of soil frost. The annual fluxes from the clay soil ranged from 3.7 to 7.8 kg N ha–1 and those from sandy loam from 1.5 to 7.5 kg N ha–1. On average 60% of the annual fluxes occurred outside the growing season, from October to April. Increasing the number of freeze-thaw events was found to increase the fluxes during winter and during the thawing period in spring. The results suggest that N2O fluxes from these boreal mineral soils do not vary much as a function of applied fertiliser N and could probably be better estimated from soil physical properties, including soil porosity.  相似文献   

19.
Agricultural soils are a major source of atmospheric N2O. This study was conducted to determine the effect of different crop-specific field management and N fertilization rates on N2O emissions from a fine-loamy Dystric Eutrochrept. Fluxes of N2O were measured for two years at least once a week on plots cropped with potatoes (Solanum tuberosum) fertilized with 50 or 150 kg N ha−1 a−1, winterwheat (Triticum aestivum) fertilized with 90 or 180 kg N ha−1 a−1, corn (Zea mays) fertilized with 65 or 130 kg N ha−1 a−1, and on an unfertilized, set-aside soil planted with grass (mainly Lolium perenne and Festuca rubra). The mean N2O emission rate from the differently managed plots was closely correlated to the mean soil nitrate content in the Ap horizon for the cropping period (April to October, r 2 = 0.74), the winter period (November to March, r 2 = 0.93, one outlier excluded), and the whole year (r 2 = 0.81). N2O emissions outside the cropping period accounted for up to 58% of the annual emissions and were strongly affected by frost-thaw cycles. There was only a slight relationship between the amount of fertilizer N applied and the annual N2O emission (r 2 = 0.20). The mean annual N2O-N emission from the unfertilized set-aside soil was 0.29 kg ha−1. The annual N2O-N emission from the fertilized crops for the low and the recommended rates of N fertilization were 1.34 and 2.41 kg ha−1 for corn, 2.70 and 3.64 kg ha−1 for wheat, and 5.74 and 6.93 kg ha−1 for potatoes. The high N2O emissions from potato plots were due to (i) high N2O losses from the interrow area during the cropping season and (ii) high soil nitrate contents after the potato harvest. The reduction of N fertilization (fertilizer was applied in spring and early summer) resulted in decreased N2O emissions during the cropping period. However, the emissions during the winter were not affected by the rate of N fertilization. The results show that the crop-specific field management had a great influence on the annual N2O emissions. It also affected the emissions per unit N fertilizer applied. The main reasons for this crop effect were crop-specific differences in soil nitrate and soil moisture content. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

20.
In the development of short fallow systems as alternatives to shifting cultivation in West Africa, a long-term trial was established at the International Institute of Tropical Agriculture (IITA) on an Alfisol in the forest-savanna transitional zone of southwestern Nigeria, comparing three fallow systems; natural regrowth fallow, cover crop fallow and alley cropping on soil productivity and crop yield sustainability. The natural fallow system consisted of natural regrowth of mainly Chromolaena odorata shrub as fallow vegetation. The cover crop fallow system consisted of Pueraria phaseoloides, a herbaceous legume as fallow vegetation. The alley cropping system consisted of woody hedgerows of Leucaena leucocephala as fallow vegetation. The fallow lengths were 0 (continuous cropping), 1, 2 and 3 years after 1 year of maize/cassava intercropping. Biomass produced from natural fallow and cover crop fallow was burnt during the land preparation. Fertilizer was not applied throughout the study. Without fertilizer application, maize yield declined from above 3.0 t ha–1 to below 0.5 t ha–1 during 12 years of cultivation (1989–2000) on a land cleared from a 23-year old secondary forest. Temporal change in cassava tuber yield was erratic. Mean maize grain yields from 1993–2000 except for 1999 were higher in cover crop fallow system (1.89 t ha–1) than in natural fallow system (1.73 t ha–1), while natural fallow system outperformed alley cropping system (1.46 t ha–1). During the above 7 years, mean cassava tuber yield in cover crop system (7.7 t ha–1) did not differ from natural fallow system (8.2 t ha–1), and both systems showed higher cassava tuber than the alley cropping system (5.7 t ha–1). The positive effect of fallowing on crop yields was observed for both crops in the three systems, however, insignificant effects were seen when fallow length exceeded 1 year for cover crop and alley cropping, and 2 years for natural fallow. Soil pH, organic carbon, available P and exchangeable Ca, Mg and K decreased considerably after 12 years of cultivation, even in a 3-year fallow subplot. After 12 years, soil organic carbon (SOC) within 0–5 cm depth in alley cropping (13.9 g kg–1) and natural fallow (13.7 g kg–1) was higher than in cover crop fallow (11.6 g kg–1). Whereas significant increase in SOC with either natural fallow or alley cropping was observed only after 2 or 3 years of fallow, the SOC in the 1-year fallow alley cropping subplot was higher than that in continuous cropping natural fallow subplot. It can be concluded from our study that in transforming shifting cultivation to a permanent cropping, fallow with natural vegetation (natural fallow), herbaceous legumes (cover crop fallow) and woody legumes (alley cropping) can contribute to the maintenance of crop production and soil fertility, however, length of fallow period does not need to exceed 2 years. When the fallow length is reduced to 1 year, a better alternative to natural regrowth fallow would be the cover crop for higher maize yield and alley cropping for higher soil organic matter. For fallow length of 2 years, West African farmers would be better off with the natural fallow system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号