首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The leaching of galena in ferric sulfate media   总被引:1,自引:0,他引:1  
The leaching of galena (PbS) in ferric sulfate media was investigated over the temperature range 55 °C to 95 °C and for various Fe(SO4)1.5, H2SO4, FeSO4, and MgSO4 concentrations. Relatively slow kinetics were consistently observed; in most instances, the 1-2/3α-(1−α)2/3 vs time relationship, indicative of a diffusion-controlled reaction, was closely obeyed. The diffusion-controlled kinetics were attributed to the formation of a tenacious layer of PbSO4 and S0 on the surface of the galena. The generation and morphology of the reaction products were systematically determined by scanning electron microscopy, and complex growth mechanisms were illustrated. The leaching rate increased rapidly with increasing temperature, and the apparent activation energy is 61.2 kJ/mol. The rate increases as the 0.5 power of the ferric ion concentration but is nearly independent of the concentration of the FeSO4 reaction product. The rate is insensitive to H2SO4 concentrations <0.1 M but increases at higher acid levels. The presence of neutral sulfates, such as MgSO4, decreases the leaching rate to a modest extent.  相似文献   

2.
The leaching of chalcopyrite with ferric sulfate   总被引:1,自引:0,他引:1  
The leaching kinetics of natural chalcopyrite crystals with ferric sulfate was studied. The morphology of the leached chalcopyrite and the electrochemical properties of chalcopyrite electrodes also were investigated. The leaching of chalcopyrite showed parabolic-like kinetics initially and then showed linear kinetics. In the initial stage, a dense sulfur layer formed on the chalcopyrite surface. The growth of the layer caused it to peel from the surface, leaving a rough surface. In the linear stage, no thick sulfur layer was observed. In this investigation, chalcopyrite leaching in the linear stage was principally studied. The apparent activation energy for chalcopyrite leaching was found to range from 76.8 to 87.7 kJ mol−1, and this suggests that the leaching of chalcopyrite is chemically controlled. The leaching rate of chalcopyrite increases with an increase in Fe(SO4)1.5 concentration up to 0.1 mol dm−3, but a further increase of the Fe(SO4)1.5 concentration has little effect on the leaching rate. The dependency of the mixed potential upon Fe(SO4)1.5 concentration was found to be 79 mV decade−1 from 0.01 mol dm−3 to 1 mol dm−3 Fe(SO4)1.5. Both the leaching rate and the mixed potential decreased with an increased FeSO4 concentration. The anodic current of Fe(II) oxidation on the chalcopyrite surface in a sulfate medium was larger than that in a chloride medium.  相似文献   

3.
When sintered disks of synthetic cubanite (CuFe2S3) were leached in acidified ferric sulfate solutions, the following reaction stoichiometry was observed: CuFe2S3+3Fe2(SO4)3?CuSO4+8FeSO4+3S Over the temperature range 45° to 90°C, the reaction displayed linear kinetics that were interpreted as indicating rate control by some reaction occurring at the surface of the cubanite. The apparent activation energy for the dissolution process is 11.6±0.7 kcal per mole. The dissolution rate increases steadily with increasing ferric concentration, but decreases with increasing strengths of either H2SO4 or FeSO4. The addition of either NaCl or HCl to the leaching solutions substantially catalyzes the rate of cubanite dissolution. Natural cubanite appears to dissolve like the synthetic material.  相似文献   

4.
The dissolution of chalcopyrite in ferric sulfate and ferric chloride media   总被引:1,自引:0,他引:1  
The literature on the ferric ion leaching of chalcopyrite has been surveyed to identify those leaching parameters which are well established and to outline areas requiring additional study. New experimental work was undertaken to resolve points still in dispute. It seems well established that chalcopyrite dissolution in either ferric chloride or ferric sulfate media is independent of stirring speeds above those necessary to suspend the particles and of acid concentrations above those required to keep iron in solution. The rates are faster in the chloride system and the activation energy in that medium is about 42 kJ/mol; the activation energy is about 75 kJ/mol in ferric sulfate solutions. It has been confirmed that the rate is directly proportional to the surface area of the chalcopyrite in both chloride and sulfate media. Sulfate concentrations, especially FeSO4 concentrations, decrease the leaching rate substantially; furthermore, CuSO4 does not promote leaching in the sulfate system. Chloride additions to sulfate solutions accelerate slightly the dissolution rates at elevated temperatures. It has been confirmed that leaching in the ferric sulfate system is nearly independent of the concentration of Fe3+, ka[Fe3+]0.12. In ferric chloride solutions, the ferric concentration dependence is greater and appears to be independent of temperature over the interval 45 to 100 °C.  相似文献   

5.
The enhanced leaching of sphalerite concentrates in H2SO4–HNO3 solutions and the extraction of sulfur with tetrachloroethylene were studied. Variables of the process were investigated including leaching temperature, reaction time, liquid / solid ratio, and tetrachloroethylene concentration. The number of cycles that tetrachloroethylene could be recycled did not have a significant effect on zinc extraction. The results indicated that 99.6% zinc extraction was obtained after three hours of leaching at 85 °C and 0.1 MPa O2, when 20 g of sphalerite concentrate were leached in a 200 ml solution containing 2.0 mol/L H2SO4 and 0.2 mol/L HNO3, in the presence of 10 ml C2Cl4. Leaching rates were significantly improved under these conditions.  相似文献   

6.
The diffusion coefficients of CuSO4, ZnSO4, and NiSO4 in the aqueous solution systems of MSO4 and MSO4-H2SO4 were measured at 298 K using a diaphragm-cell method, and are listed as a function of molar concentrations of MSO4 and H2SO4. It was found that the concentration dependencies of the diffusion coefficients for CuSO4, ZnSO4, and NiSO4 in each single metal sulfate solution are very similar. The presence of H2SO4 generally causes a less significant concentration dependency of the diffusion coefficients of MSO4. The concentration dependencies of the diffusion coefficients of CuSO4 in aqueous solutions of CuSO4 and CuSO4-H2SO4 are attributed to the changes in the mean activity coefficient of CuSO4 and the viscosity of the solutions. formerly Graduate Student, Department of Metallurgy, Kyoto University, Kyoto, Japan  相似文献   

7.
8.
《Hydrometallurgy》2006,81(4):265-271
The enhanced leaching of sphalerite concentrates in H2SO4–HNO3 solutions and the extraction of sulfur with tetrachloroethylene were studied. Variables of the process were investigated including leaching temperature, reaction time, liquid / solid ratio, and tetrachloroethylene concentration. The number of cycles that tetrachloroethylene could be recycled did not have a significant effect on zinc extraction. The results indicated that 99.6% zinc extraction was obtained after three hours of leaching at 85 °C and 0.1 MPa O2, when 20 g of sphalerite concentrate were leached in a 200 ml solution containing 2.0 mol/L H2SO4 and 0.2 mol/L HNO3, in the presence of 10 ml C2Cl4. Leaching rates were significantly improved under these conditions.  相似文献   

9.
The electrical conductivities of the aqueous solution system of H2SO4-MSO4 (involving ZnSO4, MgSO4, Na2SO4, and (NH4)2SO4), reported by Tozawaet al., were examined in terms of a (H2O) and H+ ion concentration. The equations to compute the concentrations of various species in aqueous sulfuric acid solutions containing metal sulfates were derived for a typical example of the H2SO4−ZnSO4−MgSO4−(Na2SO4)−H2O system. It was found that the H+ ion concentrations in concentrated sulfuric acid solutions corresponding to practical zinc electrowinning solutions are very high and remain almost constant with or without the addition of metal sulfates. The addition of metal sulfates to aqueous sulfuric acid solution causes a decrease in electrical conductivity, and this phenomenon is attributed to a decrease in water activity, which reflects a decrease in the amount of free water. The relationship between conductivity and water activity at a constant H+ ion concentration is independent of the kind of sulfates added. On the other hand, any increase in H+ ion concentration results in an increase in electrical conductivity. A novel method for the prediction of electrical conductivity of acidic sulfate solution is proposed that uses the calculated data of water activity and the calculated H+ ion concentration. Also, the authors examined an extension of the Robinson-Bower equation to calculate water activity in quarternary solutions based on molarity instead of molality, and found that such calculated values are in satisfactory agreement with those determined experimentally by a transpiration method.  相似文献   

10.
The magnesium sulfate(MgSO4)-ascorbic acid(Vc) compound leaching technique can extract rare earth elements(REEs) existing in ion-exchangeable phase and colloidal phase from ion-adso rption type rare earth ore through the synergy effect of coordination and reduction,but its reaction process and mechanism remain unclear.In this paper,the coordination-reduction leaching mechanism was analyzed from the perspectives of leaching thermodynamics and kinetics,which provide theoretical guidance...  相似文献   

11.
The nature of the reaction between Ag+ and pyrite in 0.25 M H2SO4 solutions has been investigated in order to determine whether Ag+ can enhance the ferric sulfate leaching of this mineral. Analysis of reacted pyrite particles using scanning electron microscopy, X-ray photoelectron spectroscopy (XPS), and low-angle X-ray diffraction (XRD) indicates that elemental silver and elemental sulfur are the primary surface species formed by this interaction. Rest potential measurements of a pyrite electrode immersed in a solution containing 10−2 M Ag+ are also consistent with what is expected for the deposition of metallic silver. Furthermore, the XRD data reveal that, at the most, only minor amounts of Ag2S are being produced. The presence of Ag2O has also been detected, but this is due to oxidation of silver after the experiment is complete and while the particles are being transferred for surface analysis. When 1 M ferric sulfate is contacted with pyrite which has been pretreated in a AgNO3 solution, most of the silver immediately redissolves and does not redeposit while ferric ions are present. This indicates that the kinetics of the transfer reaction between Ag+ and pyrite is slower than the reaction between Fe3+ and pyrite and suggests that Ag+ does not likely enhance the ferric sulfate leaching.  相似文献   

12.
An outline of a hydrometallurgical method employed for the processing of a copper sulphide concentrate is presented. It consists in leaching the concentrate with acid ferric sulphate solution, followed by electrolysis of the copper with simultaneous anodic regeneration of the leaching agent in electrolysers with diaphragms. Each operation, concentrate leaching, high-temperature crystallization of excess leaching agent in the form of FeSO4·H2O and diaphragm electrolysis, are discussed and described.The basic feature of the process is the double regeneration of the leaching agent which makes it possible to decrease the ferric ion concentration in recycled solutions to about 50% of the stoichiometric amount resulting from the leaching reactions.Electrolytic copper of more than 99.95% purity is obtained as a product. The method eliminates environmental pollution and solutions with high metal concentrations are circulated in a closed system.  相似文献   

13.
《Hydrometallurgy》2007,87(3-4):147-163
To help clarify the nature of the iron arsenate–sulphate compounds produced during the autoclave treatment of refractory gold ores and concentrates, systematic synthesis studies were undertaken; in addition to scorodite and Fe(SO4)(OH), two other compounds, designated as Phase 3 and Phase 4, were identified. Whereas Fe(SO4)(OH) is predominantly an orthorhombic compound, Phase 3 can have the same composition but is predominantly the monoclinic polytype, the formation of which is promoted by the solid-solution uptake of As; substitution of As results in a corresponding decrease in the OH required to maintain the charge balance; e.g., Fe[(SO4)0.60(AsO4)0.40]∑1.00[(OH)0.6(H2O)0.4]∑1.00. Phase 4 corresponds to Fe(AsO4)·¾H2O. In 0.4 M Fe(SO4)1.5 (22.3 g/L Fe), 0.41 M (40 g/L) H2SO4, 0.09 M (7 g/L) As(V) solutions, sulphate-containing scorodite was formed at 150–175 °C. Phase 3 precipitated at 175–210 °C, but mixtures of Phase 3 and Fe(SO4)(OH) formed above 210–220 °C. The Fe content of Phase 3 is about 30 mass %, whereas the AsO4 and SO4 contents vary widely and in an inversely proportional manner, reflecting the extensive mutual structural substitution of these anions. At 205 or 215 °C, Fe(SO4)(OH) was precipitated from 0.4 M Fe(SO4)1.5 (22.3 g/L Fe), 0.41 M (40 g/L) H2SO4 solutions containing < 0.03 M (2 g/L) As(V). Increasing As(V) concentrations enhance the precipitation of Phase 3, but only Phase 4 was precipitated from solutions containing > 0.33 M (25 g/L) As(V). The composition of Phase 4 is nearly constant and it contains < 1 mass % SO4. Acid concentrations > 0.2 M H2SO4 had little effect on the composition of the precipitates. At 205 °C in 0.41 M (40 g/L) H2SO4, 0.09 M (7 g/L) As(V) media, mixtures of scorodite and Phase 4 precipitated from 0.0–0.1 M Fe(SO4)1.5 (0.0–5.6 g/L Fe) solutions; for Fe(SO4)1.5 concentrations > 0.1 M, only Phase 3 formed. To provide a preliminary indication of the solubility of Phase 3 and Phase 4 in tailings impoundments, the various precipitates were leached at room temperature for 40 h in water. The As concentrations dissolved from Phase 3 were consistently < 0.1 mg/L, which suggests that Phase 3 might be an acceptable medium for arsenic disposal. In contrast, the soluble As concentrations from Phase 4 were 1–3 mg/L.  相似文献   

14.
The leaching kinetics of a low grade-calcareous sphalerite concentrate containing 38% ankerite and assaying 32% Zn, 7% Pb and 2.2% Fe was studied in HCl–FeCl3 solution. An L16 (five factors in four levels) standard orthogonal array was employed to evaluate the effect of Fe(III) and HCl concentration, reaction temperature, solid-to-liquid ratio and particle size on the reaction rate of sphalerite. Statistical techniques were used to determine that pulp density and Fe(III) concentration were the most significant factors affecting the leaching kinetics and to determine the optimum conditions for dissolution. The kinetic data were analyzed with the shrinking particle and shrinking core models. A new variant of the shrinking core model (SCM) best fitted the kinetic data in which both the interfacial transfer and diffusion across the product layer affect the reaction rate. The orders of reaction with respect to (CFe3+), (CHCl), and (S/L) were 0.86, 0.21 and − 1.54, respectively. The activation energy for the dissolution was found to be 49.2 kJ/mol and a semi-empirical rate equation was derived to describe the process. Similar kinetic behavior was observed during sphalerite dissolution in acidic ferric sulphate and ferric chloride solutions, but the reaction rate constants obtained by leaching in chloride solutions were about tenfold higher than those in sulphate solutions.  相似文献   

15.
The pressure leaching kinetics of mechanically activated sphalerite was investigated in this work. X-ray diffraction and scanning electron microscopy were used to characterise the influences of crystalline structure and morphology, respectively. A laser particle size analyser and specific surface area tester were used to determine the particle size and specific surface area, respectively. Compared to the non-activated sample, the activated samples demonstrated distinct physicochemical properties with higher reaction efficiencies and increased Zn recovery ratios. The activation energy of sphalerite decreased from 69.96 to 45.91, 45.11, and 44.44?kJ?mol?1 as the activation time increased from 0 to 30, 60, and 120?min, respectively. The reaction orders for the H2SO4 solutions of the sphalerite samples activated for 0, 30, 60, and 120?min were 1.832, 1.247, 1.214, and 1.085, respectively, which indicated that the dependency of the sphalerite leaching process on H2SO4 could be reduced by means of mechanical activation.  相似文献   

16.
Leaching behavior of ilmenite with sulfuric acid   总被引:2,自引:0,他引:2  
A study of the rate of dissolution of ilmenite in sulfuric acid solutions has been carried out. The effects of temperature, particle size, stirring speed, and concentration of sulfuric acid on the rate of dissolution of ilmenite has been investigated. Temperature range studied in this investigation was 88° to 115°C, and the Arrhenius activation energy was found to be 64.4 kJ (15.4 kcal) per mole. The rate of dissolution increased with concentration of sulfuric acid up to about 14 M sulfuric acid and decreased beyond this concentration. The maximum recovery at 14 M H2SO4 can be explained partially by the fact that H+ ion concentration peaks at about this concentration. Furthermore, reaction products, TiOSO4 and FeSO4, cover the surface of ilmenite when high concentrations of sulfuric acid are used, while these products are dissolved in water and removed from the surface when diluted sulfuric acid is involved. Based on the results obtained in this study, it can be concluded that the overall leaching of ilmenite with sulfuric acid at 88° to 115°C is described best by surface chemical reaction limiting with an order of 0.55 with respect to sulfuric acid concentration.  相似文献   

17.
《Hydrometallurgy》2008,92(1-4):144-149
The leaching rate of chalcopyrite (CuFeS2) by Fe3+ in H2SO4 solutions depends on the redox potential determined by the Fe3+/Fe2+ concentration ratio, and there is a maximum leaching rate at an optimum redox potential. The present study investigated the effects of solution composition on the optimum redox potential by electrochemical measurements using a CuFeS2 electrode and electrolyte solutions containing 0.01–1 kmol m 3 of H2SO4, Fe2+, and Cu2+ at 298 K in nitrogen.Anodic-polarization curves of the CuFeS2 electrode showed that there was a current peak on the curves in the presence of Cu2+ and Fe2+, corresponding to the maximum leaching rate. The redox potential of the peak increased markedly with increasing Cu2+ concentration, while it was little affected by the H2SO4 and Fe2+ concentrations. These results agree with the results of leaching experiments reported previously, and indicate that the optimum redox potential for chalcopyrite leaching is a function of the Cu2+ concentration. An empirical equation for the optimum redox potential for CuFeS2 leaching is proposed.  相似文献   

18.
The kinetics of dissolution of both sintered sphalerite disks and untreated sphalerite particles in ferric chloride-hydrochloric acid solutions have been investigated. Over the temperature interval 25 to 100°C, the dissolution occurred according to a linear rate law and with an associated apparent activation energy of about 10 kcal/mole. Most of the oxidized sulfide ion reported as elemental sulfur in the leach residues. The leaching rate was independent of the disk rotation speed and this fact, together with various hydrodynamic calculations, indicated that the reaction was chemically controlled. The dissolution rate increased as the 0.36 power of the ferric chloride concentration and it also increased substantially in the presence of dissolved CuCl2. The accumulation of the ferrous chloride reaction product severely retarded the leaching reaction, but the presence of dissolved zinc chloride only slightly impeded it. The leaching rate was relatively insensitive to low levels of HC1 (>1 M), but increased dramatically at higher acid concentrations because of direct acid attack of the ZnS.  相似文献   

19.
The formation of lead jarosite, Pb0.5Fe3(SO4)2(OH)6, in the presence of dissolved copper and/or zinc results in a significant substitution of these metals in the jarosite phase; the co-precipitation is most pronounced in sulphate media but also occurs, to a lesser degree, in chloride solutions. The copper and/or zinc substitute for iron, and under extreme conditions the product approaches beaverite, Pb(Cu,Zn)Fe2(SO4)2(OH)6, in structure and composition. The extent of co-precipitation increases sharply with increasing concentrations of dissolved CuSO4 or ZnSO4 and slightly with either an increasing stoichiometric ratio of PbSO4/Fe3+ or increasing ionic strength. The co-precipitation of copper or zinc is not significantly affected by acid concentration although the yield of product declines with increasing concentration of H2SO4. The extent of reaction is relatively insensitive to reaction temperatures in the range 130–180°C and to reaction times in excess of 2 h. Copper is strongly co-precipitated in preference to zinc from solutions containing both metals. Other divalent base metals such as Co, Ni and Mn are also co-precipitated with lead jarosite although not to the same degree as copper or zinc.  相似文献   

20.
The chemistry of the dump leaching of chalcopyrite has been studied by means of a chemically based model that makes it possible to calculate concentration changes for solution species during mineral dissolution. In a dump, chalcopyrite can dissolve in two ways: CuFeS2 + 4Fe3+ → Cu2+ + 5Fe2+ + 2S° CuFeS2 + O2 + 4H+ → Cu2+ + Fe2+ + 2S° + 2H2O CuFeS2 dissolution is not at equilibrium in a leach dump. However, there are a large number of homogeneous reactions taking place in the leach liquor. These may be treated as rapid equilibrium reactions in this “partial equilibrium” model. The model equations are linear and consist of an equation for each aqueous phase reaction, mass and charge balances, and a kinetic equation. Dissolution by O2 and acid should be prevented if possible. The acid consumed is partly replaced by shifts in the solution equilibria. However, the net pH increase that occurs leads to precipitation of ferric ion. The total amount of copper dissolved without precipitation is highest if high Fe(III) concentrations are used and oxygen is excluded. High H2SO4 concentrations are beneficial and high FeSO4 concentrations deleterious because of their influences on the precipitation equilibria. KNONA C. LIDDELL, formerly Graduate Assistant, Ames Laboratory USDOE and Department of Chemical Engineering, Iowa State University, Ames, IA 50011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号