共查询到18条相似文献,搜索用时 62 毫秒
1.
基于视频的自动目标检测和跟踪是计算机视觉中一个重要的研究领域,特别是基于视频的智能车辆监控系统中的运动车辆的检测和跟踪。提出了一种自适应的背景相减法来分割运动物体,为了准确地定位运动车辆的区域,采用差分图像投影和边缘投影相结合的方法来定位车体,同时利用双向加权联合图匹配方法对运动车辆区域进行跟踪,即将对运动车辆区域跟踪问题转化为搜索具有最大权的联合图的问题。该算法不仅能实时地定位和跟踪直道上运动的车辆,同时也能实时地定位和跟踪弯道上运动的车辆,从实验结果看,提出的背景更新算法简单,并且运动车辆区域的定位具有很好的鲁棒性,从统计的检测率和运行时间来看,该算法具有很好的检测效果,同时也能满足基于视频的智能交通监控系统的需要。 相似文献
2.
针对复杂环境对运动目标检测与跟踪产生的不利影响,提出一种自适应运动能量阈值结合精简彩色SIFT描述子的特定运动目标检测与跟踪方法。运用自适应运动能量阈值方法自动滤除复杂环境干扰以完成运动目标检测,由此形成目标匹配搜索域,并给出经主成份分析及精简后的彩色SIFT描述子( PCA-CSIFT )进行目标匹配,从而实现特定运动目标的连续跟踪。实验结果表明,在复杂环境下,运动目标检测方法对目标总量变化不敏感,错误率始终稳定在6.5%~34%之间。 PCA-CSIFT算法在保持高可区分性的同时错误匹配率为25.33%~28%,平均每帧处理时间不超过0.26 s,具有较好的鲁棒性与实时性。 相似文献
3.
运动目标检测与跟踪技术有着广泛的应用,但由于检测和跟踪过程容易受外界环境的干扰而造成失败,因此改进运动目标检测和跟踪算法具有重要意义。本文分类介绍了运动目标检测与跟踪算法的研究现状以及常用算法,比较了各种算法的优缺点,阐述了该课题许多尚未完全解决的问题,并对该领域未来的发展趋势进行展望。 相似文献
4.
在目标跟踪系监测系统中,视频的处理主要由摄像机视频捕获、视频图像帧的预处理、运动中目标的监测、运动目标的跟踪、运动目标的分类和目标行为描述与理解等步骤.其中,运动目标检测与跟踪是视频处理系统中的核心内容.主要对运动目标在复杂环境下检测与跟踪技术进行研究. 相似文献
5.
6.
基于自适应背景模型运动目标检测 总被引:2,自引:3,他引:2
随着城市化速度的加快,机动车日益普及,人们在享受机动车所带来的巨大便利的同时,也面临着交通拥挤的困扰。随着计算机硬件技术和计算机视觉技术的发展,基于计算机视觉的交通监控系统成为可能。从一个交通视频序列中识别出运动物体是许多交通监控系统应用系统的重要任务,针对该问题,提出了一种建立在对视频序列中的整个背景情景的统计描述基础上的运动目标的检测的有效方法,该方法能够适应变化的背景,具有较强的鲁棒性和较好的实时性。 相似文献
7.
基于自适应背景模型运动目标检测 总被引:2,自引:0,他引:2
随着城市化速度的加快,机动车日益普及,人们在享受机动车所带来的巨大便利的同时,也面临着交通拥挤的困扰。随着计算机硬件技术和计算机视觉技术的发展,基于计算机视觉的交通监控系统成为可能。从一个交通视频序列中识别出运动物体是许多交通监控系统应用系统的重要任务,针对该问题,提出了一种建立在对视频序列中的整个背景情景的统计描述基础上的运动目标的检测的有效方法,该方法能够适应变化的背景,具有较强的鲁棒性和较好的实时性。 相似文献
8.
基于RGB颜色空间的减背景运动目标检测 总被引:1,自引:0,他引:1
在计算机视觉领域中,运动目标检测与分割是一个基础而又关键的问题.减背景法是其中一个比较经典和常用的方法,其难点在于如何获取背景以及实现背景的自适应更新.针对该问?提出一种基于RGB颜色空间的运动目标检测算法,充分利用了图像序列在RGB空间中的变化特点,首先通过抽取帧图像进行背景重构,即对图像序列中每个像素点的RGB值进行排序后取中间值作为该点背景像素的RGB值;在此基础上引入学习率对背景进行自适应更新,然后在RGB空间中进行前景目标提取,最后利用数学形态学和连通性分析对结果进行后处理.实验结果表明,该算法快速有效、能够满足实时要求. 相似文献
9.
移动机器人的运动目标实时检测与跟踪 总被引:3,自引:0,他引:3
运动目标检测及跟踪是机器视觉领域备受关注的前沿课题之一。该文针对移动机器人导航领域对检测与跟踪的实时性要求,基于Kalman滤波器实现了驱动单目摄像头的反馈控制系统。采用简单的三帧差背景剪除策略检测运动目标,合并运动估计和背景补偿以加快系统反应速度。系统误差保存在协方差阵中,以增益的形式参与控制。该文还详细分析了运动补偿对检测的影响及误差的变化趋势。实验表明,系统能够保持对运动目标稳定偏差的平滑跟踪,在480320的图像分辨率下控制速度达到20Hz(fps)。 相似文献
10.
一种基于背景模型的运动目标检测与跟踪算法 总被引:74,自引:0,他引:74
本文提出了一种静止摄像机条件下的运动目标检测与跟踪算法.它以一种改进的自适应混合
高斯模型为背景更新方法,用连通区检测算法分割出前景目标,以Kalman滤波为运动模型实
现对运动目标的连续跟踪.在目标跟踪时,该算法针对目标遮挡引起的各种可能情况进行了
分析,引入了对运动目标的可靠性度量,增强了目标跟踪的稳定性和可靠性.在对多个室外
视频序列的实验中,该算法显示了良好的性能,说明它对于各种外部因素的影响,如光照变
化、阴影、目标遮挡等,具有很强的适应能力. 相似文献
11.
12.
基于背景差分和三帧差分的运动目标检测 总被引:1,自引:0,他引:1
柴池 《网络安全技术与应用》2014,(11):75-76
为了提高运动目标检测算法的准确性和对背景变化的适应性,本文采用了三帧差分与基于单高斯模型背景差分法相结合的算法,并通过最大类间方差法提取自适应阈值。引入一个新的背景更新机制,当运动物体融入背景或者背景中物体移除时,将背景更新为当前视频帧。实验结果表明,本文算法在对运动目标进行检测时,不易受背景光线变化及运动物体融入背景等因素的影响,适用于无人监控环境。 相似文献
13.
针对传统运动目标检测方法存在的缺点和不足,在对现有目标检测算法进行分析对比的基础上,设计并实现了一种简单有效的目标检测方案。首先提出了一种基于像素灰度归类和单高斯模型的背景重构算法,进而以此为基础采用背景差分法进行目标的检测,同时采用分层背景更新算法较好地解决了拖影和光照大面积变化的情况,最后给出了一种解决阴影的简单算法。实验结果表明,该算法高效、快速,可以满足实时检测的需要。 相似文献
14.
15.
16.
17.
为了提高车辆检测系统的车辆识别率,本文提出一种改进的Surendra背景更新算法,并在不同的环境下与系统原来使用的多帧图像平均背景更新算法进行实验比较。实验结果表明,新改进的Surendra背景更新算法比老算法有较明显的综合优势,能够荻取准确的背景,并可有效地进行背景更新,从而提高车辆识别率。 相似文献