首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Beta-tricalcium phosphate [Ca3(PO4)2, β-TCP] is a bioresorbable material showing an excellent biocompatibility. However, sintering of β-TCP is difficult and the material presents poor mechanical strength and a low resistance to crack-growth propagation. In this study, influence of the porosity on the hardness and the elastic modulus is studied by means of usual and instrumented microindentation tests. Nevertheless, indentation diagonals measurement by optical observations is not accurate due to the crack formation around the residual indent. That is why instrumented indentation test which allows deducing the hardness and the bulk modulus from the load-depth curve analysis is used as an alternative method. The corresponding hardness number can be calculated by using the maximum indentation depth (Martens Hardness) or the contact depth determined by Oliver and Pharr's method (Contact Hardness). But in order to give representative values when comparing classical and instrumented hardness measurements, Martens hardness is preferred because its value can be directly related to the value of the Vickers hardness number by simple geometrical considerations.In this work, bioceramics were produced by conventional sintering of β-TCP powders synthesized by aqueous precipitation. Different process conditions were chosen to obtain microporous ceramics with a porosity rate between 0 and 14% in volume. As main results, the elastic modulus is found decreasing between 166 GPa and 108 GPa and the hardness number from 4.4 GPa to 2.2 GPa when increasing the porosity rate. A model connecting mechanical properties to porosity rate and grain arrangement is validated for the elastic modulus whereas deviation is observed for the hardness number. However, we propose an original approach where the relative variation of the two mechanical properties can be expressed with a unique relation as a function of the porosity volume fraction.  相似文献   

2.
Boron carbide ceramics were obtained in 2 min by a method based on self-propagating high-temperature synthesis plus quick pressing (SHS/QP). The samples were densified to 98% of theoretical density under a large mechanical pressure (120 MPa) and a fast heating rate (2300 °C/min). The microstructure and mechanical properties were studied. The sample obtained at this heating rate presents an average grain size of 3 μm and a hardness of 34 ± 0.2 GPa.  相似文献   

3.
This study reports the improvement in the mechanical properties of SnO2:F (FTO) thin films through the modification of the structure and surface morphology. The FTO thin films are deposited on glass substrates by the atmospheric pressure chemical vapor deposition method on an industrial production line. Both the average grain size and the surface roughness were progressively increased by increasing the flow rate of metal organic monobutyltin trichloride (MBTC). The hardness and Young's modulus of the FTO films increased from 9.01 GPa to 15.08 GPa, and from 125.24 GPa to 206.93 GPa, respectively, according to the nanoindenter results. Post-heat treatment at 650 °C for 10 min resulted in a further increase in the hardness and Young's modulus, reaching maximum values of ~15.89 GPa and ~235.9 GPa, respectively. The enhancement in mechanical properties can be attributed to the reduced grain boundaries and the improved structural densification.  相似文献   

4.
《Ceramics International》2017,43(14):11189-11196
Coatings of hydroxyapatite (HAp) were prepared by plasma spraying with induction preheating of titanium substrate from 200 to 1000 °C. The combination of conventional plasma spraying and induction preheating ensured high mechanical properties of HAp coatings. The coatings produced in the temperature range 400–600 °C were characterized by homogeneous nanostructure of splats with an average grain size of 12–31 nm. According to the results of nanoindentation HAp coatings with high hardness 0.9–1.2 GPa and elastic modulus 7–16 GPa were formed on the titanium.  相似文献   

5.
Biphasic calcium phosphate (BCP) bimodal porous ceramics were prepared from a mixture of fine powders of hydroxyapatite (HAp) and beta-tricalcium phosphate (β-TCP) with varying HAp/β-TCP ratios. Two types of HAp powders and one type of β-TCP powder were used to produce porous BCP bioceramics with HAp/β-TCP weight ratios of 20/80, 40/60, and 80/20. Dissolution tests were performed to compare the dissolution properties of BCP-based bioceramics with different structural properties. Porous ceramic samples of approximately 0.5 g were individually soaked in 30 ml of simulated body fluid (SBF) solution at 36.5 °C for 1, 3, 7 and 10 days, respectively. The calcium content of the SBF solution was analyzed by ICP. The porous bodies were filtered, dried, and characterized using SEM, XRD, and FT-IR. The results indicate that the sample structural properties seem to have a greater effect than the storage environment on the dissolution properties.  相似文献   

6.
《Ceramics International》2016,42(9):10638-10644
In this study, ceramics containing mixed phases of hydroxyapatite/beta-tricalcium phosphate (HA/β-TCP) were fabricated by a solid-state reaction technique. The HA powder was synthesized from cockle shells while the β-TCP powder was synthesized from egg shells. Pure HA and β-TCP fine powders were successfully obtained. The HA and β-TCP were mixed and subjected to a thermal treatment up to 1100 °C. To form the mixed phase ceramics, the resulting powders were sintered at 1350 °C. Effects of HA concentration on the properties of the studied ceramic were investigated. X-ray diffraction analysis revealed that all samples presented multiphase of calcium phosphate compounds. Average grain size of the ceramics decreased with the HA additive content. The 75 wt% HA ceramic showed the maximum hardness value (5.5 GPa) which is high when compared with many calcium phosphate ceramics. In vitro bioactivity test indicated that apatite forming increased with the HA additive content. To increase antibacterial activity, selected ceramics were coated with AgNO3. Antibacterial test suggested that an Ag compound coating on the ceramics could improve the antibacterial ability of the studied ceramics. In addition, the antibacterial ability for the Ag coated ceramics depended on the porosity of the ceramics.  相似文献   

7.
In the present work, well-shaped HAp green bodies were obtained by the gel-casting process with 50 vol.% slurry. After drying, the microstructure and pore distribution of the green body were investigated. The density, compressive strength and flexural strength of the green body were 1.621 g/cm3, 32.6 ± 3.2 MPa and 13.8 ± 1.0 MPa, respectively. After pressureless sintering at the range of 1100–1300 °C for 2 h, the relative density of the final product ranges from 71.8 to 97.1% th. The maximum value of flexural strength, elastic modulus, hardness and fracture toughness were 84.6 ± 12.6 MPa, 138 ± 7 GPa, 4.45 ± 0.18 GPa and 0.95 ± 0.13 MPa m1/2, respectively. SEM images show a compact and uniform microstructure; the average grain size was found by using the linear intercept method. XRD and FTIR determined the phase and the radical preserved after sintering.  相似文献   

8.
《Ceramics International》2021,47(24):34575-34584
In this work, Nile tilapia (Oreochromis niloticus) bone was calcined at 800 °C for 5 h in an air atmosphere to obtain hydroxyapatite powder (FB powder). The elemental composition, phase structure, and morphology of the FB powder were investigated and compared with commercial hydroxyapatite powder (SM powder). The FB-powder exhibited 1.01 at. % of Mg while the SM-powder showed Mg in ppm-level. Carbonate groups were detected in the two powders. Both HAp and β-tricalcium phosphate (β-TCP) structures were found in the FB powder, but the SM powder exhibit only the HAp phase. Irregular-shaped particles were observed in the FB powder. After the two HAp powders were sintered at 1200 °C and 1250 °C for 2 h (FB-1200, FB-1250, SM-1200, and SM-1250), the β-TCP intensity peaks of the FB-ceramic samples significantly increased with increasing sintering temperature. The highest relative density, well-packed grains, and β-TCP stabilization by Mg at the Ca5 site of the FB-1250 structure were the dominant factors governing the highest mechanical properties. Although high density was observed in the SM-1200 sample, Vickers hardness of the SM-1200 sample is lower than the FB-1250 sample. This may be attributed to the partial decomposition of HAp into β-TCP, α-tricalcium phosphate (α-TCP), and Ca10(PO4)6O phases. In addition, the increase of grain size was the main factor that governs the increasing compressive strength and Young's modulus instead of density and phase decomposition of the SM-ceramic samples.  相似文献   

9.
Biomorphic silicon/silicon carbide ceramics from birch powder   总被引:1,自引:0,他引:1  
A novel process has been developed for the fabrication of biomorphic silicon/silicon carbide (Si/SiC) ceramics from birch powder. Fine birch powder was hot-pressed to obtain pre-templates, which were subsequently carbonized to acquire carbon templates, and these were then converted into biomorphic Si/SiC ceramics by liquid silicon infiltration at 1550 °C. The prepared ceramics are characterized by homogeneous microstructure, high density, and superior mechanical properties compared to biomorphic Si/SiC ceramics from birch blocks. Their maximum density has been measured as 3.01 g/cm3. The microstructure is similar to that of conventional reaction-bonded silicon carbide. The Vicker's hardness, flexural strength, elastic modulus, and fracture toughness of the biomorphic Si/SiC were 19.6 ± 2.2 GPa, 388 ± 36 MPa, 364 ± 22 GPa, and 3.5 ± 0.3 MPa m1/2, respectively. The outstanding mechanical properties of the biomorphic Si/SiC ceramics are assessed to derive from the improved uniform microstructure of the pre-templates made from birch powder.  相似文献   

10.
Lanthanum tungstate is a promising material to be used as electrolyte in proton conducting fuel cells, or as a mixed proton-electron conducting membrane for hydrogen separation, and its mechanical properties are crucial for these applications. Lanthanum tungstates with a La/W atomic ratio between 4.8 and 6.0 have been investigated at room temperature at micro/nanoindentation range. Lanthanum tungstates exhibit a strain gradient plasticity at the vicinity of the imprints, which implies that the hardness presents an indentation size effect that was corrected using the Nix and Gao approach. The hardness and Young's modulus have therefore been determined to be 8-9 GPa and 130 ± 15 GPa, respectively. The fracture toughness was estimated to be ∼2 MPa m1/2 for LWO56 using the Palqmvist equation. Both hardness and Young's modulus did not present a significant dependence with neither the sintering temperature nor the composition. The different imprints were visualized by Atomic Force Microscopy.  相似文献   

11.
ZrB2 ceramics containing 10-30 vol% SiC were pressurelessly sintered to near full density (relative density >97%). The effects of carbon content, SiC volume fraction and SiC starting particle size on the mechanical properties were evaluated. Microstructure analysis indicated that higher levels of carbon additions (10 wt% based on SiC content) resulted in excess carbon at the grain boundaries, which decreased flexure strength. Elastic modulus, hardness, flexure strength and fracture toughness values all increased with increasing SiC content for compositions with 5 wt% carbon. Reducing the size of the starting SiC particles decreased the ZrB2 grain size and changed the morphology of the final SiC grains from equiaxed to whisker-like, also affecting the flexure strength. The ceramics prepared from middle starting powder with an equiaxed SiC grain morphology had the highest flexure strength (600 MPa) compared with ceramics prepared from finer or coarser SiC powders.  相似文献   

12.
SiC-5 wt.% ZrB2 composite ceramics with 10 wt.% Al2O3 and Y2O3 as sintering aids were prepared by presureless liquid-phase sintering at temperature ranging from 1850 to 1950 °C. The effect of sintering temperature on phase composition, sintering behavior, microstructure and mechanical properties of SiC/ZrB2 ceramic was investigated. Main phases of SiC/ZrB2 composite ceramics are all 6H-SiC, 4H-SiC, ZrB2 and YAG. The grain size, densification and mechanical properties of the composite ceramic all increase with the increase of sintering temperatures. The values of flexural strength, hardness and fracture toughness were 565.70 MPa, 19.94 GPa and 6.68 MPa m1/2 at 1950 °C, respectively. The addition of ZrB2 proves to enhance the properties of SiC ceramic by crack deflection and bridging.  相似文献   

13.
Y2O3:Eu3+ (1 at.%) translucent nanostructured ceramics with total forward transmission achieving ∼70% of the theoretical limit has been obtained by the transformation-assisted consolidation of custom-made cubic Y2O3:Eu3+ nanopowders under high pressure (HP). Sintering under the pressure of 7.7 GPa and temperatures in the 100-500 °C range leads to the partial cubic-to-monoclinic phase transition that results in two-phase Y2O3:Eu3+ nanoceramics. The average grain size of ceramics d ≤ 50 nm for both Y2O3:Eu3+ polymorph is comparable with crystallite size of initial nanopowders (d ∼ 40 nm), indicating that the grain growth factor is near unity. The phase compositions, morphology, densities, preliminary optical and luminescent properties of synthesized nanostructured ceramics have been studied.  相似文献   

14.
Al2O3 ceramics were fabricated without additives under high pressure (2-7 GPa) at different temperatures (600-1200 °C) using nanocrystalline alumina powder with metastable γ-Al2O3 phase as the starting material.It was shown that high pressure increases the nucleation rate while reducing the growth rate of the transformed α phase so that its grain size decreases and nano-scale grains in the sintered structure can be achieved.On the other hand the sintered samples at 7 GPa and high temperature (1000 °C) have shown micron-scale large grain sizes compared to those sintered at lower pressures, for the same temperature and sintering time. This could be attributed to the higher input energy in the system at high pressure and high temperature conditions, thereby reaching the final stage in sintering more quickly.In this work, the best combination of grain size (∼200 nm) and density (98.0% TD) was obtained under the sintering condition of 1000 °C at 7 GPa with a holding time of 1 min.Thus for high pressure/high temperature conditions, the sintering time should be reduced to prevent grain growth.  相似文献   

15.
To maintain the bioactivity and to improve the mechanical properties of titania, both pure titania ceramics and titania–yttria-stabilized tetragonal zirconia (Y-TZP) composites with 5, 10, and 15 vol.%Y-TZP were prepared via a sol–gel precipitation method. A titania precursor (titanium butoxide) was mixed with a submicron-sized Y-TZP powder, followed by hydrolysis-condensation reactions, green compact forming, and sintering in air at 1200–1350 °C. It was found that the addition of Y-TZP resulted in reduced rutile titania grain size from 13 to 3 μm. The Y-TZP tetragonal phase also resulted in improved mechanical properties of the titania–Y-TZP composites. For instance, the titania–15 vol.%Y-TZP composite had a hardness value of 983 kg/mm2, a bending strength of 160 MPa, and a fracture toughness of 3.79 MPa m0.5. While the addition of Y-TZP increased the mechanical properties, it also decreased the bioactivity of the composites.  相似文献   

16.
The effect of employing a short sintering holding time of 12 min as compared to that of the commonly employed holding time of 120 min (2 h) on the properties of undoped and 1 wt% manganese oxide (MnO2)-doped Y-TZP ceramics were studied. Sintering studies was conducted over the temperature range of 1150-1600 °C. Bulk density, Young's modulus, Vickers hardness and fracture toughness tests were carried out on the sintered samples. The results revealed that the 12 min sintering holding time was effective in promoting densification of the 1 wt% MnO2-doped Y-TZP without sacrificing tetragonal phase stability or mechanical properties and incurring grain growth. Microstructure investigation by using the scanning electron microscope (SEM) of the fracture MnO2-doped Y-TZP samples which was subjected to rapid quenching in liquid nitrogen revealed distinct microstructural features believed to be associated with the presences of a transient liquid phase during sintering. A sintering mechanism was subsequently proposed to explain the densification behaviour of MnO2-doped Y-TZP ceramics.  相似文献   

17.
Guangze Tang  Mingren Sun 《Carbon》2005,43(2):345-350
Fluorocarbon films were deposited on silicon substrate by R.F. magnetron sputtering using a polytetrafluoroethylene (PTFE) target. Structure of the deposited films was studied by X-ray photoelectron spectroscopy (XPS). Hardness, elastic modulus and scratch resistance were measured using a nanoindenter with scratch capability. -CFx (x = 1, 2, 3) and C-C units were found in the deposited fluorocarbon films. The hardness and elastic modulus of the films are strongly dependent on the R.F. power and deposition pressure. The film hardness is in the range from 0.8 GPa to 1.3 GPa while the film elastic modulus is in the range from 8 GPa to 18 GPa. Harder films exhibit higher scratch resistance. Differences in nanoindentation behavior between the deposited fluorocarbon films, diamond-like carbon (DLC) films and PTFE were discussed. The fluorocarbon films should find more applications in the magnetic storage and micro/nanoelectromechanical systems.  相似文献   

18.
We investigated hydroxyapatite (HAp) formation from alpha-tricalcium phosphate (α-TCP) under solvothermal conditions using water-ethanol solution. The rate of HAp formation decreased with increasing ethanol fraction in the solution. Needle-like HAp was formed with a small amount of beta-tricalcium phosphate after solvothermal treatment for 3 h in solutions with water/ethanol volume ratios of 5/15 and 10/10. In the solution with water/ethanol volume ratio of 5/15, needle-like HAp formed with a small amount of dicalcium phosphate anhydrous (DCPA) at 12 h, and the amount of DCPA increased with increasing treatment period. The aspect ratio of the HAp crystals that formed increased with increasing ethanol fraction in the solution. The fraction of ethanol in the solution during the solvothermal processing affects not only the rate of transformation of α-TCP into HAp, but also the morphology of the HAp that is formed.  相似文献   

19.
The mechanical properties of polycrystalline diamond coatings with thickness varying from 0.92 to 44.65 μm have been analysed. The tested samples have been grown on silicon substrates via microwave plasma enhanced chemical vapour deposition from highly diluted gas mixtures CH4-H2 (1% CH4 in H2). Reliable hardness and elastic modulus values have been assessed on lightly polished surface of polycrystalline diamond films.The effect of the coating thickness on mechanical, morphological and chemical-structural properties is presented and discussed. In particular, the hardness increases from a value of about 52 to 95 GPa and the elastic modulus from 438 to 768 GPa by varying the coating thickness from 0.92 to 4.85 μm, while the values closer to those of natural diamond (H = 103 GPa and E = 1200 GPa) are reached for thicker films (> 5 μm). Additionally, the different thickness of the diamond coatings permits to select the significance of results and to highlight when the soft silicon substrate may affect the measured mechanical data. Thus, the nanoindentation experiments were made within the range from 0.65% to 10% of the film thickness by varying the maximum load from 3 to 80 mN.  相似文献   

20.
Tensile properties of long aligned double-walled carbon nanotube strands   总被引:1,自引:0,他引:1  
The mechanical properties of well-aligned double-walled carbon nanotube (DWNT) strands with diameters of 3-20 μm and lengths of ∼10 mm were measured using a stress-strain puller. The average tensile strength and Young’s modulus of the tested strands are 1.2 GPa and 16 GPa, respectively. Deformation and fracture processes of these samples are discussed. The tensile strength and Young’s modulus of an individual DWNT bundle were estimated, with values comparable to those of SWNT bundles. The superior mechanical strengths of our as-prepared DWNT strands are expected to give them potential as a high-strength material and a reinforcement in composites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号