首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Eu-doped transparent mica glass–ceramics were prepared, the influence of Eu-doping on the crystallization of the parent glasses was investigated and the luminescent properties of the parent glasses and the glass–ceramics were estimated. A small additive amount of Eu element was very effective in preparing transparent mica glass–ceramics. However, the excess addition led to the coarsening of phase separation in the glass phase and the separation of unidentified crystal phases and β-eucryptite during heating of the parent glasses, which caused white opaque at lower heating temperatures. When mica crystals were separated, Eu ions entered the interlayers of mica crystals. The observed emission and excitation spectra showed that parts of Eu3+ ions which were added as Eu2O3 were reduced to Eu2+ ions during melting of the starting materials and heating the parent glasses in air and the energy transfer from Eu2+ to Eu3+ ions occurred.  相似文献   

2.
The novel dental ceramics can be fabricated at lower temperatures when sol–gel derived lithium disilicate glass ceramics (LDGC) was used as an additive for yttr...  相似文献   

3.
K. Zhang  B. Li 《应用陶瓷进展》2015,114(2):121-125
Crystallisation of magnetite in multicomponent glass melts was investigated. Structural features and magnetic properties were tested using X-ray diffraction, scanning electron microscope techniques, vibrating sample magnetometer and Mössbauer spectroscopy at room temperature. The results show that the magnetite phase was detected in the glass–ceramic samples after heat treatment at higher crystallisation temperature (over 900°C). Fe2+ and Fe3+ ions contribute to the formation of magnetite crystal. Various crystal morphologies were observed. Isomer shift values suggest that Fe3+ and Fe2+ are in tetrahedral and octahedral coordination respectively. The saturation magnetisation tends to increase with the crystallisation temperature.  相似文献   

4.
Glasses and glass ceramics of the xMoO3(100?x)[7GeO2·3PbO] system where x=0–30 mol% MoO3 were synthesized and characterized in order to obtain information about the structural correlations and the relationship between structure and physical properties in these materials. Changes of the FTIR, UV–vis and EPR data are discussed in view of the glass network structural changes determined by the evolution of molybdenum ions state, glass composition and MoO3 concentration.The spectroscopic studies indicate that with increasing of MoO3 content a fraction of the Mo6+ ions convert Mo3+ and Mo5+ ions. Accordingly, these modifications cause the depolymerization of the host network, the increase of the structural disorder and formation of GeO2 and PbMoO4 crystalline phases. The shape of EPR spectra is modified by the increase of the MoO3 concentration indicating that molybdenum ions exists in glass and glass ceramics in more than one valence state. The EPR spectra contain a broad line located at g~5.2 and, for the samples with a MoO3 content up to x≥15 mol%, the presence of the hyperfine structure characteristic for the Mo5+ ions can be observed, too.The electrochemical performances of the glass and glass ceramics samples with x=10 and 30 mol% MoO3 were demonstrated by cyclic voltammetry.  相似文献   

5.
Ferrimagnetic glass–ceramics are promising candidates for magnetic induction hyperthermia, which is one form of inducing deep-regional hyperthermia, by using a magnetic field. The aim of this work was to study the effect of increasing the amount of crystallized magnetite on the magnetic properties of glass–ceramic samples. Two different ferrimagnetic glass–ceramics with the composition based on wollastonite or hardystonite with high quantity (∼60%) of magnetite were prepared by melting the starting materials at 1450 °C for 2 h. The influences of chemical composition, amount of crystallized magnetite and microstructure of ferrimagnetic glass–ceramics on magnetic properties of ferromagnetic glass–ceramics were investigated using differential thermal analysis (DTA), X-ray diffraction (XRD), transmission electron microscope (TEM) and scanning electron microscope (SEM). The X-ray diffraction patterns show the presence of nanometric magnetite crystals in a glassy matrix after cooling from melting temperature. The amount of crystallized magnetite varies as a function of the chemical composition and heat treatment schedule. The presence of ZnO in the glass–ceramics was found to decrease the viscosity and so cases higher degree of mobility of ions leading to higher degree of crystallinity. The higher heat treatment parameters and so the lower viscosity of the glass containing ZnO are assumed to allow the magnetite to grow to larger crystallite size. Glass transition temperature and thermal stability were found to be functions of chemical composition. Magnetic hysteresis cycles were analyzed using a vibrating sample magnetometer (VSM) with a maximum applied field of 15 kOe at room temperature in quasi-static conditions. From the obtained hysteresis loops, the saturation magnetization (Ms), remanance magnetization (Mr) and coercivity (Hc) were determined. The results showed that these materials are expected to be useful in the localised treatment of cancer.  相似文献   

6.
《Ceramics International》2017,43(5):4508-4512
Chalcogenide glasses of 65GeS2–(25–x)Ga2S3–10AgI–xLa2S3 (x=0, 1, 3, and 5 mol%) were fabricated through the traditional melt-quenching method. The effects of addition of La2S3 on physical, thermal and optical properties of the glass system were investigated. The results showed that the fabricated glasses possess considerably high glass transition temperature, exhibit improved mechanical property and excellent infrared transmission. A redshift at the visible absorbing cut-off edge is observed with increasing of La2S3 content. The direct and indirect optical band gap values are also calculated. Raman spectra analysis indicated that the band at 265 cm−1 decreased in amplitude and a new peak at 230 cm−1 was detected manifesting the formation of La-S bond in the network. In addition, the mid-infrared emission at 3.74 µm of the glasses doped with Tm3+ ions was achieved. The results indicated that the glasses are promising materials for mid-infrared applications such as imaging, remote sensing and lasers.  相似文献   

7.
8.
TiO2 was employed to develop cordierite glass–ceramics for thermal transmission pipeline binders by a melt-quenching method. The effects of TiO2 on the phase composition, microstructure, and physical properties of glass–ceramics were studied. In addition, the thermal shock resistance of the glass–ceramics based binder was investigated. The results showed the formation of α cordierite could be increased by adding 1.0 wt% TiO2, thereby improving bending strength and decreasing the coefficient of thermal expansion. However, a 3-5 wt% TiO2 additive resulted in massive generation of µ cordierite, which exhibited a negative effect on the above performances. After crystallization at 1000°C for 2 h, sample B1 (1 wt% TiO2 additional) displayed the best overall properties. It was demonstrated that cordierite glass–ceramics were satisfactory materials as heat transmission pipeline binders when the C2 binder (40 wt% frit, 60 wt% as-prepared sample B1) was applied, which had a good thermal shock resistance.  相似文献   

9.
By employing a melt-sintering method, we prepared a new type of ferrimagnetic glass–ceramic foam (FGCF) using ferrimagnetic glass–ceramic and foaming agent SrCO3. The ferrimagnetic glass–ceramics were fabricated based on pyrite slag by a melt-quenching method. The effects of foaming agent content, sintering temperature and time on microstructure, magnetic properties, microwave absorption performance, compressive strength, and thermal conductivity of the as-obtained FGCF were analyzed. This foaming process at 1100°C for 40 min with 3-wt% SrCO3 provided an FGCF with a bulk density of .693 g/cm3, a porosity of 63.60%, a specific saturation magnetic moment of 5.2 A m2/kg, a compressive strength of 2.61 MPa, a thermal conductivity of .241 W/(m K), and the calculated reflection loss of −12.1 dB for a layer thickness of 9 mm.  相似文献   

10.
Polyimide films in which magnetic Fe3O4 nanoparticles are uniformly distributed are prepared. Before the preparation of the Fe3O4–polyimide composites, pure magnetite nanoparticles (Fe3O4) have been synthesized in water by co-precipitation (from ferric chlorides). Its surface was firstly modified with the 3-aminopropyl triethoxysilane. The prepared polyimide–Fe3O4 nanocomposite films were characterized for their structure, morphology, and thermal behavior employing Fourier transform infrared spectroscopy, scanning electron micrograph, X-ray diffraction, and thermal analysis (DTA/TGA/DSC) techniques.  相似文献   

11.
For the development of a new wear resistant and chemically stable glass-ceramic glaze, the CaO–ZrO2–SiO2 system was studied. Compositions consisting of CaO, ZrO2, and SiO2 were used for frit, which formed a glass-ceramic under a single stage heat treatment in electric furnace. In the sintered glass-ceramic, wollastonite (CaSiO3) and calcium zirconium silicate (Ca2ZrSi4O12) were crystalline phases composed of surface and internal crystals in the microstructure. The internal crystal formed with nuclei having a composition of Ca1.2Si4.3Zr0.2O8. The CaO–ZrO2–SiO2 system showed good properties in wear and chemical resistance because the Ca2ZrSi4O12 crystals positively affected physical and mechanical properties.  相似文献   

12.
This article investigates effect of composition, including SiO2 and impurity defined to contain K2O, Na2O, Fe2O3, etc., from K-feldspar, on sinter-crystallization and properties of the low temperature co-fired α-cordierite glass–ceramics. Increasing impurity content from 5.72 wt% to 9.16 wt% leads to enhanced crystallinity, formation of leucite and more pores but the crystallinity and porosity decreased with a further increase to 10.8 wt%. The main impurity K2O is critical for formation of α-cordierite and leucite. Only α-cordierite was precipitated from the glasses with different SiO2 contents but an increase of SiO2 content slightly improves their densification. The impurity and SiO2 contents greatly affect the properties of glass–ceramics. Notably, some glass–ceramics from K-feldspar show high densification at low temperature, low dielectric constant (6–8), low loss (about 0.005), appropriate linear CTEs (4.32–5.87 × 10−6 K−1) and flexural strength (above 100 MPa), all of which meet the requirements of LTCC substrates.  相似文献   

13.
Foaming and crystallisation behaviours of compacted glass powders based on a diopside glass–ceramic composition were investigated using the sintering route. The foaming agent was 2 wt.% SiC particles. The effect of PbO on the foaming ability of glasses was investigated. The results showed that the addition of PbO not only improved the foaming ability, by improving the wettability of the glass–SiC particles but also increased the crystallisation temperature and widened the temperature interval between the dilatometric softening point and the onset of crystallisation. The glass–SiC wetting angle was decreased from 85° for the lead-free glass, to 55° for the glass that contains 15 wt.% PbO.  相似文献   

14.
15.
ZrC–SiC ceramics were fabricated by high-energy ball milling and reactive hot pressing of ZrH2, carbon black, and varying amounts of SiC. The ceramics were composed of nominally pure ZrC containing 0 to 30 vol% SiC particles. The relative density increased as SiC content increased, from 96.8% for nominally pure ZrC to 99.3% for ZrC-30 vol% SiC. As SiC content increased from 0 to 30 vol%, Young's modulus increased from 404 ± 11 to 420 ± 9 GPa and Vickers hardness increased from 18.5 ± 0.7 to 23.0 ± 0.5 GPa due to a combination of the higher relative density of ceramics with higher SiC content and the higher Young's modulus and hardness of SiC compared to ZrC. Flexure strength was 308 ± 11 MPa for pure ZrC, but increased to 576 ± 49 MPa for a SiC content of 30 vol%. Fracture toughness was 2.3 ± 0.2 MPa·m1/2 for pure ZrC and increased to about 3.0 ± 0.1 MPa·m1/2 for compositions containing SiC additions. The combination of high-energy ball milling and reactive hot pressing was able to produce ZrC–SiC ceramics with sub-micron grain sizes and high relative densities with higher strengths than previously reported for similar materials.  相似文献   

16.
Glass samples with composition of (50?X) PbO–X MgO–25 TiO2–25B2O3 (where X=0, 5, 10 and 15 mol%) were prepared using conventional quenching technique. The amorphous nature of glass samples were confirmed by XRD. The glass transition temperature, Tg and crystallization temperature Tc were determined from the DTA. It has been observed that the addition of MgO enhances the Tg. The rise in Tg with MgO content may be attributed to the greater field strength of Mg2+ cation (as compared to Pb2+) which leads to the formation of stronger bonds. These glass samples were converted to glass–ceramics by following a two-stage heat treatment schedule. It was observed that there was good correlation between the density and CTE results of the glass–ceramics. The XRD results revealed the formation of tetragonal lead titanate as a major crystalline phase in the glass–ceramics. The addition of MgO to the glass contributes to the formation of MgB4O7. The dielectric constant for all the glass–ceramic samples was observed to be higher than that of corresponding glass samples. Further, with addition of MgO the room temperature dielectric constant for glass–ceramic samples increases up to 10 mol% of MgO and then decreases for 15 mol%. It has been further observed that the variation of dielectric constant of glass–ceramic samples with MgO content is exactly opposite to the variation of crystallite size of PbTiO3 embedded in the glass ceramic-samples.  相似文献   

17.
Pb0.94Sr0.05La0.01(Zr0.54Ti0.46)0.9975O3–Pb(Mn1/3Nb2/3)O3 (PSLZT–PMnN) ceramics with pure perovskite structure were prepared by conventional mixed oxide method. The influence of PMnN on the structural, dielectric and piezoelectric properties was investigated. The experimental results showed that the perovskite structure changed from tetragonal to rhombohedral symmetry and the Curie temperature decreased gradually with the increase of PMnN. The composition with 3 mol% PMnN exhibited favorable properties of Qm (400), d33(660 pC/N), kp (0.60), KT (1940), tan δ (0.90%) and TC (247 °C), exhibiting potential usage for piezoelectric actuator and sensor applications.  相似文献   

18.
Porous calcium–silicate–hydrate was synthesized and used to recover phosphorus from wastewater. The principal objective of this study was to explore the phosphorus recovery performance of porous calcium–silicate–hydrate prepared by different Ca/Si molar ratios. Phosphorus recovery mechanism was also investigated via Field Emission Scanning Electron Microscopy (FESEM), Energy Dispersive Spectrum (EDS), Brunauer–Emmett–Teller (BET) and X-ray Diffraction (XRD). The law of Ca2+ release was the key of phosphorus recovery performance. Different Ca/Si molar ratios resulted in the changes of pore structures. The increase of specific surface area and the increase in concentration of Ca2+ release were well agreement together. The Ca/Si molar ratio of 1.6 for porous calcium–silicate–hydrate is more proper to recover phosphorus. The pore structure of porous calcium–silicate–hydrate provided a local condition to maintain a high concentration of Ca2+ release. Porous calcium–silicate–hydrate could release a proper concentration of Ca2+ and OH? to maintain the pH values at 8.5–9.5. This condition was beneficial to the formation of hydroxyapatite. Phosphorus content of porous calcium–silicate–hydrate reached 18.64% after phosphorus recovery.  相似文献   

19.
Multi-phase ceramics in the TaC–TaB2–C system were prepared from TaC and B4C mixtures by reactive pressureless sintering at 1700–1900 °C. The pressureless densification was promoted by the use of nano-TaC and by the presence of active carbon in the reaction products. The presence of TaB2 inhibited grain growth of TaC and increased the hardness compared to pure TaC. If a coarse TaC powder was used, the compositions did not densify. In contrast, pure nano-TaC was pressureless sintered at 1800 °C by the addition of 2 wt.% carbon introduced as carbon black or graphite. The introduction of carbon black resulted in fully dense TaC ceramics at temperatures as low as 1500 °C. The grain size of nominally pure TaC ceramics was a strong function of carbon stoichiometry. Enhanced grain size in sub-stoichiometric TaC, compared to stoichiometric TaC, was observed. Additional work is necessary to optimize processing parameters and evaluate the properties of ceramics in the TaC–TaB2–C system.  相似文献   

20.
Polycrystalline ceramic samples of dysprosium (Dy3+) doped bismuth ferrite of general formula Bi1?xDyxFeO3 (x=0.00, 0.01, 0.05 and 0.1) have been prepared by standard solid state reaction method. Powder X-ray diffraction (XRD) analysis reveals that all the samples crystallize in the rhombohedral structure with noncentrosymmetric R3c space group. The refined lattice parameters decrease with the increase of Dy concentration within the same structure symmetry. The bond lengths among atoms for all the compounds were calculated by the Rietveld analysis. The frequency and temperature dependent dielectric constants (real and imaginary parts) have been measured. The real part of dielectric constant reveals that the Neel temperature decreases with the increase of Dy-substitution down to ~200 °C for 10% substitution to the Bi site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号