首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sintering of CeO2 is studied in situ by high temperature scanning environmental microscopy (HT-ESEM) at T = 1400 °C. The morphological modifications of a single grains population are recorded for 6 h. Kinetic parameters are extracted from image series. The local grain growth determined from the single population studied in situ is compared to the general grain growth obtained by classical ex situ technique. Using HT-ESEM for sintering study is validated. The grain boundary velocities range between 0 and 5 μm h−1, with a mean value of about 1 μm h−1. The migration of the intragranular surface pores is described. Their velocities range between 0.4 and 1.2 μm h−1 and depend on pore diameters: the smaller the pore, the faster the pore velocity. The time required to fill a pore that arises at the sample surface is determined as a function of pore diameter. The time for pore elimination dependence with the pore diameters is also established.  相似文献   

2.
The propagation and termination rate coefficients for bulk polymerization of the butyl acrylate dimer (BA dimer) are determined by pulsed laser techniques. The rate coefficient for propagation, kp, is deduced for temperatures from 20 to 90 °C via the pulsed laser polymerization-size exclusion chromatography (PLP-SEC) method at pulse repetition rates between 1 and 10 Hz. The Arrhenius parameters were found to be: EA(kp) = (34.2 ± 1.0) kJ mol−1 and A(kp)/L mol−1 s−1 = (1.08 ± 0.49) × 107 L mol−1 s−1. The termination rate coefficient, kt, has been measured via SP-PLP-ESR, single pulse-pulsed laser polymerization in conjunction with time-resolved electron spin resonance detection of radical concentration. The resulting Arrhenius parameters as deduced from the temperature range −15 to +30 °C are: EA(〈kt〉) = (22.8 ± 3.7) kJ mol−1 and log(A/L mol−1 s−1) = 10.6 ± 1. The chain-length dependence of kt was studied at 30 °C. For short chains a significant dependence was found which may be represented by an exponent α = 0.79 in the power-law expression kt(i) = kt0i−α.  相似文献   

3.
This work investigates the feasibility to the fabrication of high density of fine alumina–5 wt.% zirconia ceramics by two-step sintering process. First step is carried out by constant-heating-rate (CHR) sintering in order to obtain an initial high density and a second step is held at a lower temperature by isothermal sintering aiming to increase the density without obvious grain growth. Experiments are conducted to determine the appropriate temperatures for each step. The temperature range between 1400 and 1450 °C is effective for the first step sintering (T1) due to its highest densification rate. The isothermal sintering is then carried out at 1350–1400 °C (T2) for various hours in order to avoid the surface diffusion and improve the density at the same time. The content of zirconia provides a pinning effect to the grain growth of alumina. A high ceramic density over 99% with small alumina size controlled in submicron level (0.62–0.88 μm) is achieved.  相似文献   

4.
Boleslav Taraba 《Fuel》2010,89(11):3598-3601
Subaquatic oxidation of two bituminous coals by water-dissolved oxygen was investigated using batch reactor equipped with membrane oxygen sensor. Effects of time, temperature and coal grain size were studied as basic parameters influencing the oxidation process. Obtained results showed the subaquatic coal oxidation can be considered as interaction of the first reaction order with respect to oxygen. From temperature dependence of oxidation rate, activation energies = 72 ± 4 kJ mol−1 and/or 50 ± 4 kJ mol−1 were calculated. For the samples, oxygen consumption RO2 was found to be in the range of 2 × 10−7 mol O2 kg−1 s−1 to 6 × 10−7 mol O2 kg−1 s−1, such values being quite comparable with RO2 for aerial oxidation of bituminous coals.  相似文献   

5.
W.B. Utomo 《Electrochimica acta》2006,51(16):3338-3345
The corrosion of titanium in H2SO4 electrolytes (0.001-1.0 M) at temperatures from ambient to 98 °C has been investigated using steady-state polarization measurements. Four distinct regions of behaviour were identified, namely active corrosion, the active-passive transition, passive region and the dielectric breakdown region. The active corrosion and active-passive transition were characterized by anodic peak current (im) and voltage (Em), which in turn were found to vary with the experimental conditions, i.e., d(log?(im))/dpH=−0.8±0.1 and dEm/dpH which was −71 mV at 98 °C, −58 mV at 80 °C and −28 mV at 60 °C. The activation energy for titanium corrosion, determined from temperature studies, was found to be 67.7 kJ mol−1 in 0.1 M H2SO4 and 56.7 kJ mol−1 in 1.0 M H2SO4. The dielectric breakdown voltage (Ed) of the passive TiO2 film was found to vary depending on how much TiO2 was present. The inclusion of Mn2+ into the H2SO4 electrolyte, as is done during the commercial electrodeposition of manganese dioxide, resulted in a decrease in titanium corrosion current, possibly due to Mn2+ adsorption limiting electrolyte access to the substrate.  相似文献   

6.
3YSZ green layers approximately 10 μm thick were screen-printed onto 3YSZ substrates and their constrained sintering kinetics were measured at 1100-1350 °C using an optical dilatometer. The densification rates of the same powder in the form of pellets and free-standing films were also measured. The constrained densification rate was greatly retarded compared with the free densification rate at a given temperature and density. The retardation increased with increasing density and temperature and could not be properly accounted for by existing theories of constrained sintering. As a result the apparent activation energy is much lower for constrained sintering (135 ± 20 kJ mol−1) than for free sintering (660 ± 30 kJ mol−1). It is proposed that this is because the constrained microstructure exhibits larger and more widely separated pores at the higher temperatures.  相似文献   

7.
In the present study, the sintering behavior of a commercial nano alumina powder with an initial particle size of 100 nm was investigated. The shrinkage response of the powder formed by pressure filtration (PF) during non-isothermal sintering was measured in a laser assisted dilatometer at three different heating rates of 2, 10 and 25 °C min−1 up to 1400 °C. In order to calculate the activation energy of sintering, constant rate of heating (CRH) was employed and the activation energy was found to be 608 ± 20 kJ mol−1 for iso-density method. The heating rate was demonstrated to have a vital role on densification behavior and final grain size. The mean grain size of the full dense specimens decreased from 875 to 443 nm when the heating rate increased from 2 to 25 °C min−1.  相似文献   

8.
At room temperature, the hexagonal C60. 2(CH3)CCl3 solvate (a = 10.13(1) Å, c = 10.84(1) Å), made of alternating layers of C60 and solvent molecules, forms with a negative excess volume, and its desolvation enthalpy is virtually the same as the sublimation enthalpy of the pure solvent. Crystallographic and calorimetric studies vs temperature indicate that hexagonal C60. 2(CH3)CCl3 changes at 211.7 K (1.3 kJ mol−1 of solvate) into an intermediate triclinic phase which transforms at 189.7 K (4.1 kJ mol−1 of solvate) into another triclinic phase.A crystallographic analysis in the series of hexagonal C60. 2 YCCl3 solvates (Y = H, Cl, Br, CH3) reveals that: (i) the change in the unit-cell volume values is due to a change in axis c whose value depends on the size of Y, (ii) the molar volume of the solvates depends linearly on the molar volume of the solvents.Ageing studies at room temperature show that C60. 2(CH3)CCl3 loses its solvent molecules within a few days or a few months, depending on storage conditions.  相似文献   

9.
The aim of this present work is to study the effect of VC and/or Cr3C2 in densification, microstructural control and mechanical behaviour of WC-12Co ultrafine and nanocrystalline mixtures, consolidated by spark plasma sintering at 1100 °C, applying a pressure of 80 MPa in combination with a heating rate of 100 °C min−1. Nanocrystalline and ultrafine mixtures with an average size of 30 nm and 100-250 nm, respectively, with the addition of 1 and 0.5 wt.% of VC/Cr3C2 grain growth inhibitors, respectively, were investigated. The density, microstructure, hardness and fracture toughness of the consolidated samples were measured and observed. The addition of VC inhibitor allows an excellent grain growth control keeping microstructures with an average grain size of 154 nm. The hardness values and fracture toughness obtained were about 2000 HV30 and above 10 MPa m1/2, respectively.  相似文献   

10.
Spontaneously adsorbed monolayers of [Co(ttp-CH2-SH)2](PF6)2 have been formed on platinum microelectrodes by exposure to micromolar solutions of the complex in 0.1 M TBABF4 in acetonitrile, ttp-CH2-SH is 4′-(p-(thiolmethyl)-phenyl)-2,2′:6′,2″-terpyridine. Resonance Raman spectroscopy on roughened polycrystalline platinum macro electrodes show that the molecule undergoes adsorption through the sulphur atom onto the platinum surface. The monolayers show reversible and well defined cyclic voltammetry when switched between Co2+ and Co3+ forms, with a peak to peak splitting of 0.040 ± 0.005 V up to 200 V s−1 and an FWHM of 0.138 ± 0.010 V. Adsorption is irreversible leading to the maximum surface coverage, 6.3 ± 0.3 × 10−11 mol cm−2 for 2.5 ≤ [Co(ttp-CH2-SH)2] ≤ 10 μM. The rate of monolayer formation appears to be controlled not by mass transport or interfacial binding but by surface diffusion of the complex. The surface diffusion coefficient is 5.5 ± 1.1 × 10−7 cm2 s−1 indicating that prior to formation of an equilibrated monolayer, the adsorbates have significant mobility on the surface. The electron transfer process across the monolayer-electrode interface has been probed by high speed chronoamperometry and the standard heterogeneous electron transfer rate constant, k°, is approximately 3.06 ± 0.03 × 104 s−1. The reorganization energy is at least 18.5 kJ mol−1.  相似文献   

11.
Dielectric (εr′) studies of phase pure T′-type Eu2CuO4 ceramics of two markedly different grain sizes (D), prepared by (i) conventional powder mixing and (ii) citrate complexation-Pechini process, have been carried out in the frequency range 0.1 Hz to 1 MHz, and at temperatures −100 °C to 150 °C. εr′ is found to be highly grain size dependent. For the sample with coarse bar-like grains (D2~17×6 μm2) εr′ is >103, and for the finer grain size sample with bimodal distribution (D1~1 μm, D2~3 μm) εr′ is ~105; for both the samples, high εr′ value is nearly frequency independent over 500 Hz≤f<100 kHz and T≥30 °C. The impedance spectroscopy (IS) study has clearly shown that both, the coarse- and the fine-grained samples consist of semiconducting grains and insulating grain boundaries that primarily lead to an internal barrier layer capacitance (IBLC) effect. And thus, manifest colossal dielectric constant (εr′>103) in Eu2CuO4 ceramics. The smaller grain size (Pechini) sample, with over an order higher number of grains and grain boundary network, showing over an order higher εr′ (~105) compared to the coarse grained one, further endorses the IBLC effect.  相似文献   

12.
This work represents an investigation concerning neck growth kinetics during microwave sintering of free-packed spherical shaped binderless tungsten carbide particles. Application of classical sphere-to-sphere approach showed possibility to identify main diffusion mechanisms operating during initial stage of microwave sintering of tungsten carbide powder. An anomalous neck growth in the initial period during microwave sintering was also revealed, which was then followed by neck growth obeying mechanisms of volume and surface diffusion. Numerical simulation of neck growth process revealed anomalous values for diffusion coefficients - 7.16 × 10−13 and 3.41 × 10−8 m2 s−1 for 950 and 1200 °C respectively. The value of activation energy of neck growth process has been calculated as 69.18 kJ mol−1. That value is significantly lower then any data on activation energy of diffusion processes in W-C system, and may be explained by overheating in the neck zone, or even formation of liquid phase in the neck area.  相似文献   

13.
To more accurately investigate the nucleation, crystallization and dispersion behaviors of silica particles in polymers, the composites of PET with monodisperse SiO2-PS core-shell structured particles were prepared with SiO2 size from 380 nm to 35 nm.For these SNPET samples, DSC results showed that the nucleation rate of silica particles increased as their size decreased, in which 35 nm SiO2 particles produced the most obvious nucleation effect. At 2.0 wt.% load of 35 nm silica, Avrami equation proved that the isothermal crystallization rate G of SNPET was ca. 30% higher than that of pure PET and the crystallization activation energy for SNPET was −218.7 kJ mol−1 lower than −196.1 kJ mol−1 for PET. While, the non-isothermal crystallization ΔE for SNPET was −199.8 kJ mol−1 lower than −185.5 for PET.On non-isothermal crystallization, Jeziorny equation presented the primary and secondary crystallization stages in PET and SNPET, in which nano SiO2 accelerated the crystallization rate. Their Ozawa number m was from 2.1 to 2.7, which was smaller than that of Avrami number n.The nucleation and dispersion behaviors of SiO2 particles were directly observed. POM results demonstrated that SNPET samples crystallized more quickly from melt and their crystallization rate increased as silica load increases but accelerated at 2-3 wt.%. The spherulites grew well in PET but their size was smaller in SNPET due to the silica barrier on their growth. SEM and TEM observed the homogeneous silica dispersion morphology and the vivid ordered patterns formed in SNPET. The monodisperse particles are highly expected to give more accurate and valuable references than multi-scale ones in obtaining novel advanced PET composites.  相似文献   

14.
The mechanism during electropolishing of NiTi in methanolic 3 M sulfuric acid is elucidated based on the investigations carried out using a rotating disc electrode (RDE). The influence of the rotation rate, temperature and the addition of Ni and Ti ions in solution on the dissolution kinetics are investigated and analysed. The dissolution of NiTi during electropolishing exhibits Levich behaviour confirming mass transport as the rate-limiting step. The temperature dependence shows a typical Arrhenius behaviour and the activation energy for dissolution is Ea = 19.2 (±1.33) kJ mol−1. The addition of metal ions to the electropolishing solution results in a lower limiting current density for both, Ni2+ and Ti4+ addition. This confirms the mass transport of dissolved species from the anode surface to the bulk of the solution as the rate-determining step.  相似文献   

15.
The thermal decomposition of kaolin with high-content of the medium ordered kaolinite was studied by Effluent Gas Analysis (EGA) under non-isothermal conditions. This technique enables to distinguish two overlaying processes during the thermal decomposition of kaolin: oxidation of organic compounds and dehydroxylation. The kinetic of non-isothermal dehydroxylation of kaolinite is controlled by the rate of the third-order reaction. For the given reaction mechanism, the overall activation energy (EA) and pre-exponential (frequency) factor (A) values are 242 kJ mol1 and 2.21 × 108 s1, respectively.  相似文献   

16.
Sintering behavior and electromagnetic properties of Ni0.5Zn0.5Fe2−xO4−3/2x ferrite (x = 0, 0.4, 0.8) by the sol–gel method are investigated. Fe deficiency in the composition enhances sintering and retards grain growth. The near fully dense Fe-deficient samples could be obtained at a sintering temperature as low as 1120 °C and the highest relative density appears in the x = 0.8 sample sintered at 1150 °C. Second phase zincite ZnO resulting from Fe deficiency plays an important role in spinel NiZn ferrites by acting as a grain growth inhibitor and the grain growth of NiZn ferrite is effectively suppressed. When the sintering temperature is above 1200 °C, extensive grain growth occurs due to the probability of serious volatilization of zinc at high temperatures. The ratio of Ni to Zn of NiZn ferrites increases with increasing Fe deficiency due to the separation of zinc from spinel lattice, which results in the decrease in initial permeability and the increase in Curie temperature and resonant frequency.  相似文献   

17.
It was recently shown that an abnormally fast transport of CO molecules takes place at the electrode/electrolyte interface of Pt and PtRu electrodes in H2SO4 and HClO4 solutions. In the present paper, this phenomenon is tested for other gases, such as hydrogen and oxygen. The fast transport is also observed at the solid/electrolyte solution interface of other electrode materials and at the glass/electrolyte interface. Several experiments are shown, demonstrating that mass transfer takes place at a velocity, which is more than one order of magnitude higher than expected for usual diffusion conditions.Assuming radial mass transfer at the interface of a Pt disc, the activation energy, Ea = 23 kJ mol−1, was calculated from Arrhenius plots. The same value was measured in H2SO4 and HClO4 as supporting electrolytes. The mass transport parameter, Y, at 298 K was 4.8 × 10−3 cm2 s−1 and 2.9 × 10−3 cm2 s−1 in 0.5 M H2SO4 and 1 M HClO4 respectively.  相似文献   

18.
A self-assembled bilayer lipid-like membrane (BLM) supported on glassy carbon electrode (GCE) was fabricated using 5,5-ditetradecyl-2-(2-trimethyl-ammonioethyl)-1,3-dioxane bromide (DTDB) for epinephrine (EP) determination in the presence of ascorbic acid (AA). This modified electrode (DTDB/GCE) has strong membrane adsorption accumulation and electrocatalytic ability toward EP and AA. The oxidation of EP was controlled by double step adsorption accumulation process of the DTDB-BLM. The parameters of fitted Langmuir isotherm Γmax, BADS, and ΔGADS values were determined as 1.0×10−11 mol cm−2, 2.04×106 dm3 mol−1, and −45.17 kJ mol−1 for the fist step for EP concentration less than 1 mM, and 4.92×10−11 mol cm−2, 7.35×104 dm3 mol−1, and −37.1 kJ mol−1 for the second step for EP concentration higher than 1 μM. The DPV peaks for EP and AA oxidations were appeared at 0.220 and 0.085 V versus SCE, respectively, allowing the determination of EP in the presence of high concentration of AA. The advantage of DTDB-BLM was demonstrated experimentally in comparison with other three BLMs, and attributed to the dioxane group as well as the suitable length of the carbon chain of DTDB molecule. The current response of the DTDB/GCE was fast and reproducible, suitable for the electrochemical sensing in flow-injection systems. A linear range of 1×10−8 to 1×10−4 M EP was preliminary obtained using a simple setup.  相似文献   

19.
The formation mechanism and microstructural development of the spinel phases in the Co1 − xO/Co2TiO4 composites upon reactive sintering the Co1 − xO and TiO2 powders (9:1 molar ratio) at 1450 °C and during subsequent cooling in air were studied by X-ray diffraction and analytical electron microscopy. The Co2TiO4 spinel occurred as inter- and intragranular particles in the matrix of Ti-doped Co1 − xO grains with a rock salt-type structure during reactive sintering. The submicron sized Co2TiO4 particles were able to detach from grain boundaries in order to reach an energetically favorable parallel orientation with respect to the host Co1 − xO grains via a Brownian-type rotation/coalescence process. Upon cooling in air, secondary Co2TiO4 nanoparticles were precipitated and the Ti-doped Co1 − xO host was partially oxidized as Co3 − δO4 spinel by rapid diffusion along the {1 1 1} and {1 0 0}-decorated interphase interface and the free surface of the composites.  相似文献   

20.
Hideto Tsuji  Ippei Fukui 《Polymer》2003,44(10):2891-2896
Poly(l-lactide) (i.e. poly(l-lactic acid) (PLLA)) and poly(d-lactide) (i.e. poly(d-lactic acid) (PDLA)) and their equimolar enantiomeric blend (PLLA/PDLA) films were prepared and the effects of enantiomeric polymer blending on the thermal stability and degradation of the films were investigated isothermally and non-isothermally under nitrogen gas using thermogravimetry (TG). The enantiomeric polymer blending was found to successfully enhance the thermal stability of the PLLA/PDLA film compared with those of the pure PLLA and PDLA films. The activation energies for thermal degradation (ΔEtd) were evaluated at different weight loss values from TG data using the procedure recommended by MacCallum et al. The ΔEtd values of the PLLA/PDLA, PLLA, and PDLA films were in the range of 205-297, 77-132, and 155-242 kJ mol−1 when they were evaluated at weight loss values of 25-90% and the ΔEtd value of the PLLA/PDLA film was higher by 82-110 kJ mol−1 than the averaged ΔEtd value of the PLLA and PDLA films. The mechanism for the enhanced thermal stability of the PLLA/PDLA film is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号