首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Densification studies of 8 mol% yttria stabilized zirconia ceramics were carried out by employing the sintering techniques of conventional ramp and hold (CRH), spark plasma sintering (SPS), microwave sintering (MWS) and two-stage sintering (TSS). Sintering parameters were optimized for the above techniques to achieve a sintered density of >99% TD. Microstructure evaluation and grain size analysis indicated substantial variation in grain sizes, ranging from 4.67 μm to 1.16 μm, based on the sintering methodologies employed. Further, sample was also sintered by SPS technique at 1425 °C and grains were intentionally grown to 8.8 μm in order to elucidate the effect of grain size on the ionic conductivity. Impedance spectroscopy was used to determine the grain and grain boundary conductivities of the above specimens in the temperature range of RT to 800 °C. Highest conductivity of 0.134 S/cm was exhibited by SPS sample having an average grain size of 1.16 μm and a decrease in conductivity to 0.104 S/cm was observed for SPS sample with a grain size of 8.8 μm. Ionic conductivity of all other samples sintered vide the techniques of TSS, CRH and MWS samples was found to be ∼0.09 S/cm. Highest conductivity irrespective of the grain size of SPS sintered samples, can be attributed to the low densification temperature of 1325 °C as compared to other sintering techniques which necessitated high temperatures of ∼1500 °C. The exposure to high temperatures while sintering with TSS, CRH and MWS resulted into yttria segregation leading to the depletion of yttria content in fully stabilized zirconia stoichiometry as evidenced by Energy Dispersive Spectroscopy (EDS) studies.  相似文献   

2.
Sintering of titania nanoceramic: Densification and grain growth   总被引:1,自引:0,他引:1  
Two-step sintering (TSS) has been applied in the current study to suppress the accelerated grain growth of TiO2 nanopowder compacts in the final sintering stage. While the grain size ranges between 1 and 2 μm in the full dense structures produced by pressureless conventional sintering (CS), application of two-step sintering has led to a remarkable grain size decline to ~250 nm. With regard to the expensive procedure of spark plasma sintering (SPS), similar density and grain size results determine the straightforward TSS method as a desirable rival for SPS.  相似文献   

3.
This work investigates the feasibility to the fabrication of high density of fine alumina–5 wt.% zirconia ceramics by two-step sintering process. First step is carried out by constant-heating-rate (CHR) sintering in order to obtain an initial high density and a second step is held at a lower temperature by isothermal sintering aiming to increase the density without obvious grain growth. Experiments are conducted to determine the appropriate temperatures for each step. The temperature range between 1400 and 1450 °C is effective for the first step sintering (T1) due to its highest densification rate. The isothermal sintering is then carried out at 1350–1400 °C (T2) for various hours in order to avoid the surface diffusion and improve the density at the same time. The content of zirconia provides a pinning effect to the grain growth of alumina. A high ceramic density over 99% with small alumina size controlled in submicron level (0.62–0.88 μm) is achieved.  相似文献   

4.
A novel oscillatory pressure sintering (OPS) process is reported to prepare high‐quality ceramics. The oscillatory pressure was applied at three stages (initial, intermediate, and final) during sintering process of zirconia ceramics for the first time. The microstructure of the samples prepared by OPS develops in a more homogeneous manner, leading to a higher final density, a smaller average grain size, and a narrower distribution of grain sizes compared with the samples prepared by conventional pressureless sintering (PS) and hot‐pressing (HP) processes. Remarkably, the OPS samples was obtained at relatively lower heating temperature and less soaking time for 1300°C and 0.5 hours than the samples prepared by other two techniques at 1450°C and 1 hour. The current results suggest that OPS is an effective technique for preparing high‐quality zirconia ceramics with low heating temperature and short sintering time, thus, it obviously reduces cost.  相似文献   

5.
3 mol% Y2O3-stabilized zirconia nanopowders were fabricated using various sintering techniques; conventional sintering (CS) and non-conventional sintering such as microwave (MW) and pulsed electric current-assisted-sintering (PECS) at 1300 °C and 1400 °C. A considerable difference in the densification behaviour between conventional and non-conventional sintered specimens was observed. The MW materials attain a bulk density 99.4% theoretical density (t.d.) at 1300 °C, while the CS materials attain only 92.5% t.d. and PECS 98.7% t.d. Detailed microstructural evaluation indicated that a low temperature densification leading to finer grain sizes (135 nm) could be achieved by PECS followed by MW with an average sintered grain size of 188 nm and CS 225 nm. It is believed that the high heating rate and effective particle packing are responsible for the improvements in these properties.  相似文献   

6.
Densification of nanocrystalline yttria stabilized zirconia (YSZ) powder with 8 mol% Y2O3, prepared by a glycine/nitrate smoldering combustion method, was investigated by spark plasma sintering, hot pressing and conventional sintering. The spark plasma sintering technique was shown to be superior to the other methods giving dense materials (≥96%) with uniform morphology at lower temperatures and shorter sintering time. The grain size of the materials was 0.21, 0.37 and 12 μm after spark plasma sintering, hot pressing and conventional sintering, respectively. Total electrical conductivity of the materials showed no clear correlation with the grain size, but the activation energy for spark plasma sintered materials was slightly higher than for materials prepared by the two other densification methods. The hardness, measured by the Vickers indentation method, was found to be independent on grain size while fracture toughness, derived by the indentation method, was slightly decreasing with increasing grain size.  相似文献   

7.
《Ceramics International》2015,41(8):9692-9700
Spark plasma sintering followed by hot isostatic pressing was applied for preparation of polycrystalline alumina with submicron grain size. The effect of additives known to influence both densification and grain growth of alumina, such as MgO, ZrO2 and Y2O3 on microstructure development was studied. In the reference undoped alumina the SPS resulted in some microstructure refinement in comparison to conventionally sintered materials. Relative density >99% was achieved at temperatures >1200 °C, but high temperatures led to rapid grain growth. Addition of 500 ppm of MgO, ZrO2 and Y2O3 led, under the same sintering conditions, to microstructure refinement, but inhibited densification. Doped materials with mean grain size <400 nm were prepared, but the relative density did not exceed 97.9%. Subsequent hot isostatic pressing (HIP) at 1200 and 1250 °C led to quick attainment of full density followed by rapid grain growth. The temperature of 1250 °C was required for complete densification of Y2O3 and ZrO2-doped polycrystalline alumina by HIP (relative density >99.8%), and resulted in fully dense opaque materials with mean grain size<500 nm.  相似文献   

8.
Overall, 8-mol% yttria-stabilized zirconia (8YSZ), unlike 3YSZ, is optically transparent and stable against low-temperature degradation but has insufficient mechanical properties due to its large grain size. The influence of the grain size of 8YSZ on mechanical properties was investigated to develop an 8YSZ suitable for dental restoration. Modulation of the grain size and relative density was achieved via a two-step sintering (TSS) process, and the corresponding kinetic window was established. The conditions of TSS employed herein yielded a relative density of more than 99% while maintaining a small grain size of 0.75 µm. On the other hand, the highest biaxial strength and the highest total transmittance attained were 833 MPa and 34.6% (1-mm- thick, 39.1% for a 0.5-mm thick sample) in the TSS 8YSZ with a grain size of 1.25 µm. These results suggest that strength has improved only when grain size reduction and increased relative density are achieved at the same time. The results demonstrate that the ceramic processing method has a significant effect on the mechanical and optical properties of 8YSZ needed for dental restoration and provide a new insight that contrasts previous studies focused on the starting material.  相似文献   

9.
Contrarily to conventional sintering (CS) method where longer cycles and high temperature (1400–1500?°C) are applied to sinter yttria-stabilized tetragonal zirconia polycrystalline (Y-TZP) ceramics, this work presents a faster and low temperature (1175?°C) way through hot pressing (HP) to produce full densified zirconia with good mechanical and tribological properties. This work is concerned with the influence of sintering pressure on the microstructure and tribological properties of hot-pressed Y-TZP. For this purpose, four sintering pressures 5, 20, 60 and 100?MPa were tested. The wear tests were carried out by reciprocating ball-on-plate as a simplified test for tooth-to-restorative material contact under 37?°C using artificial saliva to mimic oral conditions. The results demonstrated that density, hardness and tribological properties are strongly influenced by the sintering pressure, namely an improvement with pressure increase was achieved. The highest density, hardness values and wear resistance were achieved for Y-TZP samples produced at P?=?100?MPa. Furthermore, it was revealed that a smaller grain size for Z100 samples (full densification condition) was achieved comparatively to conventional-sintered Y-TZP. This work proves that it is possible to produce dense Y-TZP materials under low sintering temperature and faster cycles with reduced grain size without compromise mechanical and tribological properties.  相似文献   

10.
The aim of this study is the preparation and characterization of dense cubic zirconia ceramics and zirconia nanocomposites (reinforced with 5 wt% alumina). The powders were obtained through sol–gel methods and densified using classical sintering and spark plasma sintering (SPS) methods. The obtained ceramics were characterized through X-ray diffraction, scanning electron microscopy and impedance spectroscopy at room and high temperature. The average grain size of cubic zirconia particles was found to be approximately 8 and 2.5 μm for the classical sintering and 99 nm for SPS. The alumina particles in composites have an average grain size of 0.7 μm for classical sintering and 53 nm for SPS ones. The total conductivity for nanocomposites sintered through both methods was also determined.  相似文献   

11.
Sintering and grain growth of nano-crystalline undoped ZnO has been studied in detail over a wide range of temperature and holding time. Below 800 °C, sintering of over 70% theoretical density is not observed, irrespective of particle size. At 900 °C for 6 h, the nano-crystalline sample sinters to 99% of theoretical density whereas the density for as received sample is 93% of theoretical density. However, at 1300 °C or higher, the densification is found to be much faster and after a few hours becomes independent of holding time. Grain growth studies reveal a similar feature of attaining saturation over holding time. The average saturated grain size is found to be ∼1.5 and ∼2.2 μm at 800 and 900 °C, respectively, while at 1300 °C or higher, it is in between 12 and 13 μm.  相似文献   

12.
High-density submicrometer-sized Ni0.5Zn0.5Fe2O4 ferrite ceramics were prepared by spark plasma sintering in conjunction with sufficient high energy ball milling. They were evaluated by different characterization techniques such as X-ray diffraction, scanning electron microscopy, and dielectric and magnetic measurements. All samples prepared at sintering temperatures ranging from 850 to 925 °C exhibit a single spinel phase and their relative densities and grain sizes range from 90% to 99% and ~100 nm to ~300 nm, respectively. The dielectric constant increases with decreasing grain size until ~250 nm, and then decreases dramatically with further decreasing grain size. The saturation magnetization increases continuously with increasing grain size/density but the magnetic coercivity decreases. The highest dielectric constant and saturation magnetization at room temperature are approximately 1.0×105 and 84.4 emu/g, respectively, while the lowest magnetic coercivity is only around 15 Oe. These outstanding properties may be associated with high density and uniform microstructure created by spark plasma sintering. Therefore, the spark plasma sintering is a promising technique for fabricating high-quality NiZn ferrites with high saturation magnetization and low coercivity.  相似文献   

13.
We report a novel oscillatory pressure‐assisted hot‐pressing process for preparing high‐quality ceramics. Compared with the samples prepared by conventional pressureless sintering (PS) and hot‐pressing (HP), the zirconia ceramic prepared by oscillatory pressure‐assisted hot‐pressing (OPAHP) exhibited a higher density, smaller grain size, and more homogeneous structure. More remarkably, the strength of the OPAHP sample reached 1556 MPa, which is much higher than the samples prepared by other two techniques. The results suggest that OPAHP is a more effective technique for preparing high‐quality zirconia, which is likely applicable to other material systems.  相似文献   

14.
Adapting conventional sintering (CS) techniques of monolithic ceramics for the production of oxide ceramic matrix composites (Ox-CMCs) comes along with a few drawbacks, such as fiber degradation. Thus, the applicability of two-step sintering (TSS) for the production of Ox-CMCs based on Nextel™ 610 fibers and porous alumina matrix is investigated in this study for the first time. Uniaxial tensile tests were performed to evaluate the performance of mini-composites produced by TSS and compared with those produced by CS. Parameters known for influencing the mechanical behavior of the mini-composites, such as grain size, porosity, shrinkage, as well as matrix properties, were analyzed. Both sintering techniques resulted in similar grain size distributions, whereas TSS showed higher total porosity and lower amount of sintering-induced cracks. As a result, TSS samples showed a higher tensile strength of 230±27 MPa when compared to 133±8 MPa for CS. In general, it was observed that most of the densification happens during the first phase of TSS, while the matrix is slowly strengthened during the second step. Therefore, the reported TSS process is a very promising and easy-to-apply heat treatment for producing Ox-CMCs with controlled microstructure.  相似文献   

15.
The hot‐pressing kinetics of boron carbide at different stages in the hot‐pressing process was investigated. Based general densification equation and pore‐dragged creep model, the densification and grain growth kinetics were analyzed as a function of various parameters such as sintering temperature, sintering pressure and dwell time. Stress exponent of n ≈ 3 at the initial dwell stage suggests the plastic deformation may dominates the densification. The further TEM observations and the calculation based on effective stress and plastic yield stress also indicate that plastic deformation may occur and account for the large increase in density at the initial stage of sintering. Calculated grain size exponent of m ≈ 3 suggests that the grain‐boundary diffusion dominates the densification at the final stage. During the final stage of sintering, grain growth may be determined by evaporation/condensation and grain‐boundary migration.  相似文献   

16.
Al2O3 ceramics were fabricated without additives under high pressure (2-7 GPa) at different temperatures (600-1200 °C) using nanocrystalline alumina powder with metastable γ-Al2O3 phase as the starting material.It was shown that high pressure increases the nucleation rate while reducing the growth rate of the transformed α phase so that its grain size decreases and nano-scale grains in the sintered structure can be achieved.On the other hand the sintered samples at 7 GPa and high temperature (1000 °C) have shown micron-scale large grain sizes compared to those sintered at lower pressures, for the same temperature and sintering time. This could be attributed to the higher input energy in the system at high pressure and high temperature conditions, thereby reaching the final stage in sintering more quickly.In this work, the best combination of grain size (∼200 nm) and density (98.0% TD) was obtained under the sintering condition of 1000 °C at 7 GPa with a holding time of 1 min.Thus for high pressure/high temperature conditions, the sintering time should be reduced to prevent grain growth.  相似文献   

17.
Three-phase composites in the system Al2O3-YAG-ZrO2 (AYZ) were produced by doping the surface of commercial alumina nanopowders with inorganic precursors of the second phases. Materials with three different compositions were prepared, in which 5, 20 and 33 vol.% of each second phase were respectively present. Pure crystalline phases were obtained in the final composites, as assessed by X-ray diffraction. Green bodies were produced by slip casting and uniaxial pressing. Subsequent free sintering led to full densification and to highly homogeneous microstructures, in terms of grain size and second phase distribution. A progressive refinement of the alumina matrix grain size was achieved by increasing the second phase content, varying from micro/nano-composites to ultra-fine structures, with a mean grain size of about 500 nm for all the phases. The three materials presented high Vickers hardness values, as a results of the high final density and ultra-fine, homogeneous microstructures.  相似文献   

18.
采用等离子活化烧结(plasma activated sintering,PAS)制备SiC/20%(体积分数)h-BN复相陶瓷,研究了烧结工艺对复相陶瓷密度、抗弯强度、硬度,以及显微结构的影响,并对比分析了PAS与热压(hot-pressing,HP)烧结工艺不同烧结机理。结果表明:在1600℃保温3min PAS烧结与在1850℃保温1h HP烧结制备出的SiC/20% h-BN复相陶瓷具有相近的性能和微观结构,PAS烧结效率远高于HP。当引入20%微米级h-BN在烧结过程中抑制SiC晶粒长大,PAS快速烧结细化晶粒的效应在烧结SiC/20% h-BN复相陶瓷时被抑制。  相似文献   

19.
The densification trajectories and mechanical properties of zirconia ceramics obtained by oscillatory pressure sintering (OPS) process were investigated, during the sintering process an oscillatory pressure was applied at three stages. Current results indicated that at intermediate stage the oscillatory pressure revealed a favorable improvement of mechanical properties compared with conventional hot pressing (HP) and pressureless sintering (PS) procedures, while the enhancement was not obvious at initial stage. When the oscillatory pressure was applied at final stage, the OPS specimens exhibited the highest bending strength and hardness of 1455 ± 99MPa and 16.6 ± 0.31GPa compared with the PS and HP specimens. Considering the high elastic modulus and Moiré patterns observed in the OPS specimen, the oscillatory pressure applied at intermediate and final stages was detected to facilitate the sliding of grain boundary, plastic deformation of monolithic grains, the removal of pores and the strengthening of atomic bonds.  相似文献   

20.
《Ceramics International》2020,46(9):13240-13243
Zirconia ceramics were prepared by oscillatory pressure sintering (OPS) and hot pressing (HP). The result revealed that OPS could enhance densification compared to HP when sintering temperature was higher than a critical value. The onset temperature for rapid grain growth was found to be same for both techniques. However, rate of grain growth in OPS was lower than that in HP. Furthermore, the result also showed that samples prepared by OPS exhibited higher hardness than those prepared by HP when sintering temperature was higher than the critical value. The improved hardness was solely due to the higher density of the samples prepared by OPS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号