首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
High-voltage LiNi0.5Mn1.5O4 spinels were synthesized by a low temperature solution combustion method at 400 °C, 600 °C and 800 °C for 3 h. The phase composition, structural disordering, micro-morphologies and electrochemical properties of the products were investigated by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM) and constant current charge–discharge test. XRD analysis indicated that single phase LiNi0.5Mn1.5O4 powders with disordered Fd-3m structures were obtained by the method at 400 °C, 600 °C and 800 °C. The crystallinity increased with increasing preparation temperatures. XRD and FTIR data indicated that the degree of structural disordering in the product prepared at 800 °C was the largest and in the product prepared at 600 °C was the least. SEM investigation demonstrated that the particle size and the crystal perfection of the products were increased with increasing temperatures. The particles of the product prepared at 600 °C with ~200 nm in size are well developed and homogeneously distributed. Charge/discharge curves and cycling performance tests at different current density indicated that the product prepared at 600 °C had the largest specific capacity and the best cycling performance, due to its high purity, high crystallinity, small particle size as well as moderate amount of Mn3+ ions.  相似文献   

2.
Highly crystalline spinel LiMn2O4 was successfully synthesized by annealing lithiated MnO2 at a relative low temperature of 600 °C, in which the lithiated MnO2 was prepared by chemical lithiation of the electrolytic manganese dioxide (EMD) and LiI. The LiI/MnO2 ratio and the annealing temperature were optimized to obtain the pure phase LiMn2O4. With the LiI/MnO2 molar ratio of 0.75, and annealing temperature of 600 °C, the resulting compounds showed a high initial discharge capacity of 127 mAh g−1 at a current rate of 40 mAh g−1. Moreover, it exhibited excellent cycling and high rate capability, maintaining 90% of its initial capacity after 100 charge-discharge cycles, at a discharge rate of 5 C, it kept more than 85% of the reversible capacity compared with that of 0.1 C.  相似文献   

3.
The complex perovskite oxide Ba(Zn1/3Nb2/3)O3 (BZN) has been studied for its attractive dielectric properties which place this material interesting for applications as multilayer ceramics capacitors or hyperfrequency resonators. This material is sinterable at low temperature with combined glass phase–lithium salt additions, and exhibits, at 1 MHz very low dielectric losses combined with relatively high dielectric constant and a good stability of this later versus temperature. The 2 wt.% of ZnO–SiO2–B2O3 glass phase and 1 wt.% of LiF-added BZN sample sintered at 900 °C exhibits a relative density higher than 95% and attractive dielectric properties: a dielectric constant ?r of 39, low dielectrics losses (tan(δ) < 10−3) and a temperature coefficient of permittivity τ? of 45 ppm/°C−1. The 2 wt.% ZnO–SiO2–B2O3 glass phase and 1 wt.% of B2O3-added BZN sintered at 930 °C exhibits also attractive dielectric properties (?r = 38, tan(δ) < 10−3) and it is more interesting in terms of temperature coefficient of the permittivity (τ? = −5 ppm/°C). Their good dielectric properties and their compatibility with Ag electrodes, make these ceramics suitable for L.T.C.C applications.  相似文献   

4.
Ceria-based materials are prospective electrolytes for low and intermediate temperature solid oxide fuel cells. In the present work, fully dense CeO2 ceramics doped with 10 mol% gadolinium (Gd0.1Ce0.9O1.95, GDC) have been prepared with a Pechini method. Characterization studies were realized with thermo-gravimetric analysis (TGA), differential thermal analysis (DTA), mass spectroscopy (MS), high temperature FT-IR (HT-FTIR) and X-ray diffraction analysis (XRD). A single-phase with a fluorite type structure was found to form at a relatively low calcination temperature of 500 °C. Dense GDC pellets having 98% of the relative density were obtained at sintering temperature of 1400 °C/6 h, which gave significantly higher total ionic conductivity of 3.4×10−2 S cm−1 at 500 °C in air. The present work showed that the Pechini method is a relatively low-temperature preparation technique to synthesize Gd0.1Ce0.9O1.95 powders that provided high sinterability and good ionic conductivity.  相似文献   

5.
The generation of TiO2 nanoparticles by the thermal decomposition of titanium tetraisopropoxide (TTIP) was carried out experimentally using a tubular electric furnace at various synthesis temperatures (700-1300 °C) and TTIP heating temperatures (80-110 °C). The photocatalytic activity of the resulting TiO2 nanoparticles was examined by measuring the rate of methylene blue decomposition. The TiO2 nanoparticles were characterized by X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) measurements and transmission electron microscopy (TEM). The crystallite size and crystallinity increased with increasing synthesis temperature and TTIP heating temperature. A TTIP heating temperature and synthesis temperature of 95 °C and 900 °C, respectively, were found to be the optimal synthesis conditions. The primary particle diameter obtained under optimum synthesis conditions was considerably smaller than the commercial photocatalyst (Degussa, P25). The specific surface areas were more than 134.4 m2 g− 1. Under the optimal conditions, the photocatalytic activity for methylene blue was higher than that of the commercial photocatalyst.  相似文献   

6.
Yang Liu 《Electrochimica acta》2008,53(8):3296-3304
Co3O4/RuO2·xH2O composites with various Ru content (molar content of Ru = 5%, 10%, 20%, 50%) were synthesized by one-step co-precipitation method. The precursors were prepared via adjusting pH of the mixed aqueous solutions of Co(NO3)2·6H2O and RuCl3·0.5H2O by using Pluronic123 as a soft template. For the composite with molar ratio of Co:Ru = 1:1 annealed at 200 °C, Brunauer-Emmet-Teller (BET) results indicated that the composite showed mesoporous structure, and the specific surface area of the composite was as high as 107 m2 g−1. The electrochemical performances of these composites were measured in 1 M KOH electrolyte. Compared with the composite prepared without template, the composite with P123 exhibited a higher specific capacitance. When the molar content of Ru was rising, the specific capacitance of the composites increased significantly. It was also observed that the crystalline structures as well as the electrochemical activities were strongly dependent on the annealing temperature. A capacitance of 642 F/g was obtained for the composite (Co:Ru = 1:1) annealed at 150 °C. Meanwhile, the composites also exhibited good cycle stability. Besides, the morphologies and textural characteristic of the samples were also investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM).  相似文献   

7.
CaCu3Ti4O12 nano-sized powders were successfully prepared by sol-gel technique and calcination at 600-900 °C. The thermal decomposition process, phase structures and morphology of synthesized powders were characterized by IR, DSC-TG, XRD, TEM, respectively. It was found that the main weight-loss and decomposition of precursors occurred below 450 °C and the complex perovskite phase appeared when the calcination temperature was higher than 700 °C. Using above synthesized powders as starting materials, CCTO-based ceramics with excellent dielectric properties (?25 = 5.9 × 104, tan δ = 0.06 at 1.0 kHz) were prepared by sintering at 1125 °C. According to the results, a conduction mechanism was proposed to explain the origin of giant dielectric constant in CCTO system.  相似文献   

8.
Gd0.1Ce0.9O1.95 and Gd0.2Ce0.8O1.9 powders were prepared through the polyol process without using any protective agent. Microstructural and physical properties of the samples were characterized with X-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetry (TG) and impedance analysis methods. The results of the thermogravimetry/differential thermal analysis (TG/DTA) and XRD indicated that a single-phase fluorite structure formed at the relatively low calcination temperature of 500 °C. The XRD patterns of the samples revealed that the crystallite size of the samples increased as calcination temperatures increased. The sintering behavior and ionic conductivity of pellets prepared from gadolinia doped ceria (GDC) powders, which were calcined at 500 °C, were also investigated. The relative densities of the pellets, which were sintered at temperatures above 1300 °C, were higher than 95%. The results of the impedance spectroscopy revealed that the GDC-20 sample that was sintered at 1400 °C exhibited an ionic conductivity of 3.25×10−2 S cm−1 at 800 °C in air. This result clearly indicates that GDC powder with adequate ionic conductivity can be prepared through the polyol process at low temperatures.  相似文献   

9.
In this paper, we have reported a simple and rapid approach for the large-scale synthesis of β-Co(OH)2 nanoplatelets via the microwave hydrothermal process using potassium hydroxide as mineralizer at 140 °C for 3 h. Calcining the β-Co(OH)2 nanoplatelets at 350 °C for 2 h, porous Co3O4 nanoplatelets with a 3D quasi-single-crystal framework were obtained. The process of converting the β-Co(OH)2 nanoplatelets into the Co3O4 nanoplatelets is a self-supported topotactic transformation, which is easily controlled by varying the calcining temperature. The textural characteristics of Co3O4 products have strong positive effects on their electrochemical properties as electrode materials in lithium-ion batteries. The obtained porous Co3O4 nanoplatelets exhibit a low initial irreversible loss (18.1%), ultrahigh capacity, and excellent cyclability. For example, a reversible capacity of 900 mAh g−1 can be maintained after 100 cycles.  相似文献   

10.
Cu metal matrix composite with Y2W3O12 as a thermal expansion compensator was fabricated by high energy ball milling followed by compaction and sintering, and its thermal properties were explored for the potential applications as heat sinks in electronic industries, high precision optics, and space structures. The volume fraction of reinforcement was varied from 40% to 70% in order to tailor the composite for the simultaneous accomplishment of low thermal expansion and high thermal conductivity. The synthesis technique was optimized by varying the parameters like milling time from 1 to 20 h and sintering temperature from 600 to 1000 °C in order to achieve densified composites. The relative density of the composites is found to be around 90% for the 10 h milled powders followed by compaction at a pressure of 700 MPa and sintering at a temperature of 1000 °C. The thermal expansion of the composites exhibits linear behavior in the temperature range 200 to 800 °C and the low coefficient of thermal expansion (CTE) is found to be for Cu–70%Y2W3O12 composite whose value, 4.32±0.75×10−6/°C, matches with that of Si substrate. The thermal conductivities are found to increase with a decrease in the volume fraction of the reinforcement and decrease with an increase in the temperature for all the samples. The experimentally determined CTE and thermal conductivity values are found to be comparable to those predicted by the thermal expansion based Kerner and Turner model and the thermal conductivity based Maxwell model, respectively.  相似文献   

11.
The effects of sintering temperature and poling conditions on the electrical properties of tetragonal and orthorhombic diphasic Ba0.70Ca0.30TiO3 (BCT) lead-free ceramics have been systematically investigated. On the one hand, with increasing sintering temperature from 1270 °C to 1400 °C, the bulk density increases monotonically and the Curie temperature keeps almost constant with the value of ∼120 °C, whereas the grain size, the maximum relative dielectric constant, room temperature polarization reach the maximum values for samples sintered at 1340 °C. On the other hand, it is found that the piezoelectric property depends on poling electric field and poling temperature significantly. An enhanced piezoelectric behavior of d33=126 pC/N, kp=0.29, and Qm=588 is obtained for the BCT ceramics poled at 100 °C with 30 kV/cm field for 20 min. The aging behavior of the piezoelectric property is also investigated.  相似文献   

12.
Specific surface area change of ZrO2 (predominant tetragonal - (t) symmetry, 30-50 nm) and less refractory TiO2 anatase nanoparticles (20-50 nm) upon isothermal firing at 700-1000 °C in air was determined by N2 adsorption-desorption hysteresis isotherm. The nanoparticles underwent onset coarsening-coalescence within minutes without appreciable phase transformation for TiO2, but with extensive transformation into monoclinic (m-) symmetry for ZrO2. The apparent activation energy of such a process being not much higher for ZrO2 (77 ± 23 kJ/mol) than TiO2 (56 ± 3 kJ/mol) nanoparticles can be attributed to transformation plasticity. The minimum temperature for coarsening/coalescence of the present ZrO2 and TiO2 nanoparticles was estimated as 710 and 641 °C, respectively.  相似文献   

13.
Bismuth oxide in δ-phase is a well-known high oxygen ion conductor and can be used as an electrolyte for intermediate temperature solid oxide fuel cells (IT-SOFCs). 5-10 mol% Ta2O5 are doped into Bi2O3 to stabilize δ-phase by solid state reaction process. One Bi2O3 sample (7.5TSB) was stabilized by 7.5 mol% Ta2O5 and exhibited single phase δ-Bi2O3-like (type I) phase. Thermo-mechanical analyzer (TMA), X-ray diffractometry (XRD), AC impedance and high-resolution transmission electron microscopy (HRTEM) were used to characterize the properties. The results showed that holding at 800-850 °C for 1 h was the appropriate sintering conditions to get dense samples. Obvious conductivity degradation phenomenon was obtained by 1000 h long-term treatment at 650 °C due to the formation of α-Bi2O3 phase and Bi3TaO7, and 〈1 1 1〉 vacancy ordering in Bi3TaO7 structure.  相似文献   

14.
Sr3Al2O6 was synthesized via citric acid precursor. The effects of the molar ratio of citric acid to total metal cations concentration (CA/M) on the formation of Sr3Al2O6 were investigated. Increasing the CA/M promoted the formation of Sr3Al2O6. Single-phase and well-crystallized Sr3Al2O6 was obtained from the CA/M = 1, CA/M = 2 and CA/M = 4 precursor at temperature 1200 °C, 1100 °C and 900 °C, respectively. Differential thermal analysis and thermogravimetric (DTA/TG), X-ray diffractometry (XRD) and field emission scanning electron microscopy (FESEM) were used to characterize the precursors and the derived oxide powders. Sr3Al2O6 nanoparticles with a diameter of about 50-70 nm were obtained.  相似文献   

15.
Single-phase La2NiO4 has been prepared using polyvinyl alcohol (PVA) as a complexing agent. Thermogravimetric (TG), Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD) were used to characterize precursor and derived oxide powders. The particle size and morphologies of La2NiO4 crystallites were characterized by field emission scanning electron microscope (FSEM). The effect of the mol ratios of metal ion to hydroxyl groups in polyvinyl alcohol on the formation of La2NiO4 was investigated. XRD analysis showed that single-phase and well-crystallized La2NiO4 was obtained from precursor with M/OH = 1:3 at 900 °C. The La2NiO4 ceramics sintered at 1300 °C for 4 h exhibits an electrical conductivity of 42.5 Ω−1 cm−1 at room temperature.  相似文献   

16.
LiNi0.5Co0.5VO4 nano-crystals were solvothermally prepared using a mixture of LiOH·H2O, Ni(NO3)2·6H2O, Co(NO3)2·6H2O and NH4VO3 in isopropanol at 150–200 °C followed by 300–600 °C calcination to form powders. TGA curves of the solvothermal products show weight losses due to evaporation and decomposition processes. The purified products seem to form at 500 °C and above. The products analyzed by XRD, selected area electron diffraction (SAED), energy dispersive X-ray (EDX) and atomic absorption spectrophotometer (AAS) correspond to LiNi0.5Co0.5VO4. V–O stretching vibrations of VO4 tetrahedrons analyzed using FTIR and Raman spectrometer are in the range of 620–900 cm−1. A solvothermal reaction at 150 °C for 10 h followed by calcination at 600 °C for 6 h yields crystals with lattice parameter of 0.8252 ± 0.0008 nm. Transmission electron microscope (TEM) images clearly show that the solvothermal temperatures play a more important role in the size formation than the reaction times.  相似文献   

17.
In order to get homogeneous layered oxide Li[Ni1/3Mn1/3Co1/3]O2 as a lithium insertion positive electrode material, we applied the metal acetates decomposition method. The oxide compounds were calcined at various temperatures, which results in greater difference in morphological (shape, particle size and specific surface area) and the electrochemical (first charge profile, reversible capacity and rate capability) differences. The Li[Ni1/3Mn1/3Co1/3]O2 powders were characterized by means of X-ray diffraction (XRD), charge/discharge cycling, cyclic voltammetry and SEM. XRD experiment revealed that the layered Li[Ni1/3Mn1/3Co1/3]O2 material can be best synthesized at temperature of 800 °C. In that synthesized temperature, the sample showed high discharge capacity of 190 mAh g−1 as well as stable cycling performance at a current density of 0.2 mA cm−2 in the voltage range 2.3-4.6 V. The reversible capacity after 100 cycles is more than 190 mAh g−1 at room temperature.  相似文献   

18.
T. Uma 《Electrochimica acta》2007,52(24):6895-6900
The scope of the present work was to investigate and evaluate the electrochemical activity of H2/O2 fuel cells based on the influence of a heteropolyacid glass membrane with a Pt/C electrode at low temperature. A new trend of sol-gel derived PMA (H3PMo12O40) heteropolyacid-containing glass membranes inherent of a high proton conductivity and mechanical stability, was heat treated at 600 °C and implemented to H2/O2 fuel cell activities through electrochemical characterization. Significant research has been focused on the development of H2/O2 fuel cells using optimization of heteropolyacid glasses as electrolytes with Pt/C electrodes at 30 °C. A maximum power density of 23.9 mW/cm2 was attained for operation with hydrogen and oxygen, respectively, at 30 °C and 30% humidity with the PMA glass membranes (4-92-4 mol%). Impedance spectroscopy measurements were performed on a total ohmic cell resistance of a membrane-electrode-assembly (MEA) at the end of the experiment.  相似文献   

19.
Synthesis of Zn3Nb2O8 ceramics using a simple and effective reaction-sintering process was investigated. The mixture of ZnO and Nb2O5 was pressed and sintered directly without any prior calcination. Single-phase Zn3Nb2O8 ceramics could be obtained. Density of these ceramics increased with soaking time and sintering temperature. A maximum density 5.72 g/cm3 (99.7% of the theoretical density) was found for pellets sintered at 1170 °C for 2 h. Pores were not found and grain sizes >20 μm were observed in pellets sintered at 1170 °C. Abnormal grain growth occurred and grains >50 μm could be seen in Zn3Nb2O8 ceramics sintered at 1200 °C for 2 h and 1200 °C for 4 h. Reaction-sintering process is then a simple and effective method to produce Zn3Nb2O8 ceramics for applications in microwave dielectric resonators.  相似文献   

20.
Pristine and vanadium-doped In2O3 nanofibers were fabricated by electrospinning and their sensing properties to H2S gas were studied. X-ray diffractometry (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to investigate the inner structure and the surface morphology. The H2S-sensing performances were characterized at different temperatures ranging from 50 to 170 °C. The sensor based on 6 mol% V-doped In2O3 nanofibers exhibit the highest response, i.e. 13.9–50 ppm H2S at the relatively low temperature of 90 °C. In addition, the fast response (15 s) and recovery (18 s) time, and good selectivity were observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号