首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
ZnO nanorod arrays (NRAs) on transparent conductive oxide (TCO) films have been grown by a solution-free, catalyst-free, vapor-phase synthesis method at 600°C. TCO films, Al-doped ZnO films, were deposited on quartz substrates by magnetron sputtering. In order to study the effect of the growth duration on the morphological and optical properties of NRAs, the growth duration was changed from 3 to 12 min. The results show that the electrical performance of the TCO films does not degrade after the growth of NRAs and the nanorods are highly crystalline. As the growth duration increases from 3 to 8 min, the diffuse transmittance of the samples decreases, while the total transmittance and UV emission enhance. Two possible nanorod self-attraction models were proposed to interpret the phenomena in the sample with 9-min growth duration. The sample with 8-min growth duration has the highest total transmittance of 87.0%, proper density about 75 μm−2, diameter about 26 nm, and length about 500 nm, indicating that it can be used in hybrid solar cells.  相似文献   

2.
We demonstrate the morphological control method of ZnO nanostructures by atomic layer deposition (ALD) on an Al2O3/ZnO seed layer surface and the application of a hierarchical ZnO nanostructure for a photodetector. Two layers of ZnO and Al2O3 prepared using ALD with different pH values in solution coexisted on the alloy film surface, leading to deactivation of the surface hydroxyl groups. This surface complex decreased the ZnO nucleation on the seed layer surface, and thereby effectively screened the inherent surface polarity of ZnO. As a result, a 2-D zinc hydroxyl compound nanosheet was produced. With increasing ALD cycles of ZnO in the seed layer, the nanostructure morphology changes from 2-D nanosheet to 1-D nanorod due to the recovery of the natural crystallinity and polarity of ZnO. The thin ALD ZnO seed layer conformally covers the complex nanosheet structure to produce a nanorod, then a 3-D, hierarchical ZnO nanostructure was synthesized using a combined hydrothermal and ALD method. During the deposition of the ALD ZnO seed layer, the zinc hydroxyl compound nanosheets underwent a self-annealing process at 150 °C, resulting in structural transformation to pure ZnO 3-D nanosheets without collapse of the intrinsic morphology. The investigation on band electronic properties of ZnO 2-D nanosheet and 3-D hierarchical structure revealed noticeable variations depending on the richness of Zn-OH in each morphology. The improved visible and ultraviolet photocurrent characteristics of a photodetector with the active region using 3-D hierarchical structure against those of 2-D nanosheet structure were achieved.  相似文献   

3.
ZnO nanowhiskers were successfully fabricated using DC-field induced water-in-oil microemulsions method. Phase structure, morphology and microstructure of the product were investigated by X-ray diffraction and transmission electron microscopy. Parameters in preparation process such as electric field intensity and surfactant were discussed and the product formation mechanism was studied. XRD and TEM results showed that the obtained ZnO particle was hexagonal wurtzite-type with 1-3 nm in diameter and 20-70 nm in length, and morphology of the particles was shown to be correlated not only with the electric field intensity but also with the surfactant. There was a threshold when the electric field intensity was 80 V/mm. The morphology of the particles was basically spherical before the threshold, while L/D increased with the raise of electric field intensity. ZnO nanowhiskers were obtained under mixed surfactants but spherical particles were got with a single surfactant.  相似文献   

4.
In this study, controllable ZnO nanorod arrays were successfully synthesized on Si substrate at room temperature (approx. 25°C). The formation of controllable ZnO nanorod arrays has been investigated using growth media with different concentrations and molar ratios of Zn(NO3)2 to NaOH. Under such a nonequilibrium growth condition, the density and dimension of ZnO nanorod arrays were successfully adjusted through controlling the supersaturation degree, i.e., volume of growth medium. It was found that the wettability and electrowetting behaviors of ZnO nanorod arrays could be tuned through variations of nanorods density and length. Moreover, its field emission property was also optimized by changing the nanorods density and dimension.  相似文献   

5.
《Ceramics International》2016,42(15):17192-17201
Novel hybrid architectures based on ZnO nanostructures supported on reduced graphene oxide films are reported by a facile two-step aqueous electrochemical approach. Graphene oxide (GO) obtained by oxidizing graphite with either H2SO4:H3PO4 mix or H2SO4 was subjected to electrochemical reduction (ErGO) by constant potential and sweeping potential methods and further employed as seeding layer for electrodeposition of ZnO nanorods. The results showed the GO reduction rate was markedly influenced by oxygen content while Infrared spectroscopy indicated the sweeping potential was effective in removing the carbonyl and alkoxy groups but also as more defect-inducing reduction approach than constant potential, according to the Raman measurements. The subsequent electroreduction of ErGO during the electrodeposition of ZnO resulted in interfacial interaction between the seed layer and ZnO nanorods. H2SO4:H3PO4 mix induced a less disrupted graphitic plane in GO which proved beneficial for the growth of higher density ZnO nanorods with improved crystalline quality. By controlling the chemical introduction/electroreduction conditions for oxygen groups in GO materials, the interfacial interaction with ZnO nanorods and their properties could be tailored in order to obtain high performance nanoplatforms.  相似文献   

6.
This paper reports the fabrication and interface modification of hybrid inverted solar cells based on ZnO nanorod arrays and poly (3-hexylthiophene). CdSe quantum dots (QDs) are grafted to the ZnO nanorod array successfully by bifunctional molecule mercaptopropionic acid to enhance the device performance. The power conversion efficiency of the device is increased by 109% from 0.11% to 0.23% under simulated 1 sun AM 1.5 solar illumination at 100 mW/cm2 after the modification. The grafting of CdSe QDs effectively enhanced the excition generation and dissociation on the organic/inorganic interface. This work may provide a general method for increasing the efficiency of organic–inorganic hybrid solar cells by interface modification.  相似文献   

7.
ZnO nanorods on ZnO-coated seed surfaces were fabricated by solution chemical method using supersaturated (ZnNO3)2/NaOH at 70 °C. The seed surfaces were coated on glass substrates by sol–gel processing, and their texture was dominated by heating temperatures, cooling styles and layer thickness per dipping. The effects of the seed surface on the morphology of the resultant nanorods were primarily discussed. The orientation and morphology of both the seed surface and successive nanorods were analyzed by using XRD and SEM. It is proved that when the seed size increases from 15 to 50 nm with temperature increasing, the average diameter of the resultant nanorods increase from 25 to 50 nm, with a length of 800 nm after growing for 1.5 h. The seed surface prepared by heating at 300–400 °C, fast cooling or drawing at lower speed has better orientation and few surface defects, which leads to higher density of nuclei on the seed surface and thus to the optimal preferred crystal growth of ZnO rods standing perpendicular onto substrates.  相似文献   

8.
Low-temperature wet chemical bath deposition (CBD) method is one of the most efficient and least hazardous solution-based techniques which is widely employed to grow ZnO NRs. In CBD method, a seed layer is usually deposited on the substrate. In this paper, high quality ZnO and aluminum doped ZnO (AZO) seed layers are sputtered on the indium tin oxide (ITO) coated glass. In continue, aligned ZnO NRs are grown on the AZO and ZnO seed layers via CBD technique. The effect of the growth time and seed layer on the physical properties of as-grown ZnO NRs are investigated. According to the results, the seed layer plays an essential role on the growth orientation and growth rate of the ZnO NRs. The ZnO NRs grown on AZO seed layer are more aligned rather than ZnO seed layer due to their higher texture coefficients. The relative photoluminescence (PL) intensity ratio of near band emission (NBE) to deep level emission (DLE) (INBE/IDLE) for the ZnO NRs grown on AZO and ZnO seed layers are calculated as 7.45 and 2.62, respectively. To investigate the performance of the as-grown ZnO NRs, near ultraviolet organic light-emitting diodes (UV-OLEDs) using ZnO NRs array as n-type material and poly [2-methoxy-5-(2-ethyl-hexyloxy)-1,4-phenylene-vinylene] (MEH-PPV) conjugated polymer as p-type material have been fabricated. The total concentration of traps (Nt), the characteristic energies (Et) and the turn-on voltages for the devices with the structures of ITO/AZO/ZnO NRs/MEH-PPV/Al (device A) and ITO/ZnO/ZnO NRs/MEH-PPV/Al (device B) are attained 7.65 × 1016 and 7.75 × 1016 cm?3, 0.232 and 0.206 eV, 23 and 21 V, respectively. Moreover, based on the electroluminescence (EL) spectra, the NBE peaks for device A and B are obtained nearly in the wavelengths of 382 and 388 nm, respectively. Finally, various charge carrier transportation processes of prepared UV-OLEDs have been studied, systematically.  相似文献   

9.
ABSTRACT: Since the photo-electric response and charge carriers transport can be influenced greatly by the density and spacing of the ZnO nanorod arrays, controlling of these geometric parameters precisely is highly desirable but rather challenging in practice. Here, we fabricated patterned ZnO nanorod arrays with different density and spacing distance on silicon (Si) substrate by electron beam lithography (EBL) method combined with the subsequent hydrothermal reaction process. By using the EBL method, patterned ZnO seed layers with different areas and spacing distances were obtained firstly. ZnO nanorod arrays with different density and various morphologies were obtained by the subsequent hydrothermal growth process. The combination of EBL and hydrothermal growth process was very attractive and made us could control the geometric parameters of ZnO nanorod arrays expediently. Finally, the vertical transport properties of the patterned ZnO nanorod arrays were investigated through the micro probe station equipment and the I-V measurement results indicated that back-to-back Schottky contacts with different barriers height were formed in dark conditions. Under UV light illumination, the patterned ZnO nanorod arrays showed a high UV light sensitivity, and the response ratio was about 104. The controllable fabrication of patterned ZnO nanorod arrays and understanding for their photo-electric transport properties were helpful to improve the performance of nanodevices based on them.  相似文献   

10.
In this work, ZnO nanorod arrays were grown on glass substrate by the wet chemical method, and the effect of synthesis temperature on the properties was investigated. The grown nanorods were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), Raman and Photoluminescence (PL) measurements. XRD pattern showed that nanorod prepared at 80 °C and 90 °C has high crystallinity with wurtzite structure and orientated along the c-axis. However, nanorods were not formed at 60 °C and 70 °C due to less energy supply for the growth of the ZnO. FE-SEM results showed that the morphology and the size of ZnO can be effectively controlled. In particular, as the temperature increased, diameter of the nanorod was increased while length decreased. Raman scattering spectra of ZnO nanorod arrays revealed the characteristic E2high mode that is related to the vibration of oxygen atoms in the wurtzite ZnO. Room-temperature PL spectra of the ZnO nanorods revealed a near-band-edge (NBE) emission peak. The NBE (UV light emission) band at ~383 nm might be attributed to the recombination of free exciton. The narrow full-width at half-maximum (FWHM) of the UV emission indicated that ZnO nanorods had high crystallinity.  相似文献   

11.
By using a potentiostatic electrodeposition method, well-aligned ZnO nanorod arrays (ZNAs) were synthesized under different conditions. The effects of preparing conditions on the electrodeposition of ZNAs were systematically studied by scanning electron microscopy (SEM), X-ray diffraction (XRD) and absorbance spectroscopy. It is indicated that the electrodeposition parameters, such as electrodeposition potential, electrolyte pH, concentration of precursors, temperature of solution and electrodeposition time, have significant influence on the morphology, diameter, density and growth rate of ZNAs. The ZNAs, with well-defined crystallization, can be only obtained when the applied potential is controlled from −0.4 to −1.0 V. The growth temperature has great impact on the morphology of ZnO nanostructure but it is weakly related to the band gap (Eg) of ZNAs. The rod diameters can be monitored to some extent only by changing the concentration of the precursors. The electrolyte pH value has relative influence on the diameter of ZNAs. With the growth time increasing, ZNAs with high aspect ratio can be gained.  相似文献   

12.
《Ceramics International》2016,42(13):14721-14729
Different ZnO seed layers are synthesized by changing sol-gel parameters, including precursor concentration, type of solvent, and type of additive in order to systematically investigate the importance of seed layer properties on the nucleation, growth, and final properties of zinc oxide (ZnO) nanorod (NR) arrays. The X-ray diffraction (XRD) and field emission scanning electron microscope (FESEM) show the importance of the seed layer on ZnO NRs properties. Results verify that the relative intensity (RI factor) of (002) polar planes in the XRD patterns of ZnO nanoparticles (NPs) together with the aspect ratio, density, and alignment of ZnO NRs control the structural characteristics of those arrays. For instance, the RI factor of ZnO NPs and NRs follow the same trend when changing precursor concentration in sol preparation step. However, the importance of other parameters, including aspect ratio, density, and alignment of NRs is confirmed by changing solvent and additive. In addition, FESEM images show that the density of ZnO NRs is proportional to NPs density and inversely proportional to the size of ZnO NPs in the seed layers. Besides, the significant role of wrinkled inter-layer on NRs properties, together with the formation mechanism of that inter-layer are profoundly investigated.  相似文献   

13.
Cu-doped ZnO nanorods have been grown at 90°C for 90 min onto a quartz substrate pre-coated with a ZnO seed layer using a hydrothermal method. The influence of copper (Cu) precursor and concentration on the structural, morphological, and optical properties of ZnO nanorods was investigated. X-ray diffraction analysis revealed that the nanorods grown are highly crystalline with a hexagonal wurtzite crystal structure grown along the c-axis. The lattice strain is found to be compressive for all samples, where a minimum compressive strain of −0.114% was obtained when 1 at.% Cu was added from Cu(NO3)2. Scanning electron microscopy was used to investigate morphologies and the diameters of the grown nanorods. The morphological properties of the Cu-doped ZnO nanorods were influenced significantly by the presence of Cu impurities. Near-band edge (NBE) and a broad blue-green emission bands at around 378 and 545 nm, respectively, were observed in the photoluminescence spectra for all samples. The transmittance characteristics showed a slight increase in the visible range, where the total transmittance increased from approximately 80% for the nanorods doped with Cu(CH3COO)2 to approximately 90% for the nanorods that were doped with Cu(NO3)2.  相似文献   

14.
《Ceramics International》2021,47(19):27487-27495
ZnO nanorod arrays (NRs) with a large number of sharp tips and uniform shapes were grown on the carbon cloth (CC) by a simple hydrothermal method. Titanium nitride (TiN) nanoparticles with various thicknesses were deposited on the ZnO NRs by magnetron sputtering to obtain ZnO/TiN core-shell arrays. Field emission (FE) performance of ZnO NRs show close dependence on TiN coating thickness. The turn-on field first decreases and then increases with increasing TiN coating thickness from 60 nm to 300 nm. The arrays with a design architecture can strike a balance between increased emission sites and limited field shielding effects. ZnO/TiN240 core-shell NRs have the lower turn-on electric field at 0.79 V/μm and the higher current densities at 9.39 mA/cm2. The field enhancement factor (β) of ZnO/TiN240 is about 3.2 times that of the bare ZnO NRs. On the other hand, the electrochemical properties were improved due to the formation of core-shell heterojunction on the ZnO/TiN interface and porous structure, which makes the ion and charge transport more convenient. Hence, this work not only revealed that the ZnO/TiN core-shell structure exhibited excellent improvement in both FE and supercapacitors applications, but also that growing arrays on CC was expected to achieve flexible display.  相似文献   

15.
ZnO nanostructures were manipulated, via a low-temperature solution process, from pure nanorod arrays to complex nanostructures of microflowers on nanorod arrays with adjusted quantities of flowers. We proposed the mechanism of local dissolution-driven growth to rationally discuss the novel growth process. These nanostructures were used as photoanodes in dye-sensitized solar cells. Compared to pure nanorod arrays, the nanorod array-microflower hierarchical structures improved the power conversion efficiency from 0.41% to 0.92%, corresponding to a 124% efficiency increase. The enhancement of the efficiency was mainly ascribed to the synergistic effect of the enhanced surface area for higher dye loading and the improved light harvesting from efficient light scattering. Present results provide a promising route to improve the capability of light-harvesting for ZnO nanorod array-based DSSCs.  相似文献   

16.
Direct seeding of {001} textured lead zirconate titanate (PZT) on platinized silicon substrates was achieved by chemical solution deposition. The processing space for {001} PZT texturing was explored, under fixed PZT pyrolysis and crystallization conditions, by varying the lead content in solution, dopant species, and PZT layer thicknesses for deposition on platinized Si substrates with different platinum grain sizes. Strong {001} texture was achieved on fine‐grained (25 nm) platinum deposited at room temperature and dense, large‐grained platinum (80 nm) deposited at elevated temperature. Increases in lead content of solutions (from lead excesses of 10 at.% to 16 at.%) reduced surface pyrochlore coverage, with no substantial influence on orientation or grain size. Seed layer texturing was found to be insensitive to doping (Mn and Nb) on room temperature platinum, although niobium doping increased pyrochlore coverage. Conversely, on platinum deposited at high temperature, manganese doping reduced the perovskite nucleation, producing a rosette microstructure. Undoped seed layers from 30 to 70 nm thick were found to be strongly {001} textured while thicker layers were {111} textured and thinner layers were poorly crystallized.  相似文献   

17.
《Ceramics International》2019,45(12):15065-15072
In this paper, ZnO photocatalytic activity was enhanced by a built-in piezoelectric field due to the piezoelectric effect of ZnO nanorods (NRs). A simple, practical, and self-powered device was designed to simulate and harvest the very low energy of ocean waves. By testing the degradation efficiency of ZnO for different polar dyes (methyl orange, natural red and rhodamine B), the role of the dynamic built-in electric field in the photocatalytic process was illustrated. The changing piezoelectric field acts as a “photo-induced carrier storage” in that the photo-induced carriers would be separated, stored, and released on the ZnO NR surfaces incessantly, improving the separation efficiency of photo-induced carriers in the ZnO NR array. The intensity and frequency of the built-in oscillating piezoelectric field are proportional to the ZnO NR array photocatalytic efficiency. The sustainable piezo-photocatalytic performance of the ZnO NR arrays should promote further applications of ZnO photocatalyst in pollution degradation.  相似文献   

18.
We reported well-integrated zinc oxide (ZnO) nanorod arrays (NRAs) on conductive textiles (CTs) and their structural and optical properties. The integrated ZnO NRAs were synthesized by cathodic electrochemical deposition on the ZnO seed layer-coated CT substrate in ultrasonic bath. The ZnO NRAs were regularly and densely grown as well as vertically aligned on the overall surface of CT substrate, in comparison with the grown ZnO NRAs without ZnO seed layer or ultrasonication. Additionally, their morphologies and sizes can be efficiently controlled by changing the external cathodic voltage between the ZnO seed-coated CT substrate and the counter electrode. At an external cathodic voltage of −2 V, the photoluminescence property of ZnO NRAs was optimized with good crystallinity and high density.  相似文献   

19.
《Ceramics International》2016,42(16):18459-18465
A novel process of recovery of zinc from mixed sulfide-oxide lead and zinc ore was presented in this paper. ZnO nanorod arrays (ZNRAs) on FTO substrate pre-coated with a layer of ZnO seeds was synthesized successfully from the mixed ore via the oxidative ammoniacal leaching process and a two-step process including precipitation and hydrothermal synthesis. The characterization results from the XRD, SEM and UV–vis spectrophotometer analysis showed that the as-prepared ZNRAs was well-aligned, large-scale, perpendicular to the FTO substrate and had a reduced band gap energy of 3.03 eV. XPS analysis indicated that the grown ZNRAs were doped by a small quantity of carbon and did not contain any other impurities particularly Fe and Pb. The total zinc extraction can reach 92.4% after the oxidative ammoniacal leaching process and the precipitation process. The elimination of conventional purification process in zinc production was achieved due to the efficient and selective oxidative ammoniacal leaching process.  相似文献   

20.
S Wang  Y Yu  Y Zuo  C Li  J Yang  C Lu 《Nanoscale》2012,4(19):5895-5901
In this paper, hierarchical heteroassemblies made of interwoven Ag core nanowires (NWs) covered by ZnO branched nanorods (ZnO BNRs) are successfully prepared on a large scale via a solution bottom-up strategy coupling with a templating method. Briefly, heteroepitaxial growth of ZnO nanorods (ZnO NRs) on ZnO seed-coated Ag NWs is first conducted to form fluffy worm-like heteroassemblies. Then, by templating these, ZnO BNRs with exposed high-energy (001) planes on Ag NWs are fabricated with preserved morphology through the second nucleation and growth processes. When evaluated with UV-induced photo-degradation of rhodamine B (RhB), the heteroassemblies of Ag NWs-ZnO BNRs exhibit high photocatalytic properties, due to the decisive roles of the synergistic effect of the unique metal-semiconductor heterojunction and the hierarchical fluffy worm-like morphologies as well as the (001) plane-dominant surface of ZnO BNRs which are attractive for highly efficient photocatalysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号