首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report on electrical conductivity relaxation measurements of solid polymer electrolytes (SPE) based on poly(vinyl alcohol) (PVOH) and LiClO4 in which nanoporous Al2O3 particles with average pore diameter of 58 Å were dispersed. A power law frequency dependence of the real part of the electrical conductivity is observed as a function of temperature and composition. This behaviour is typical of systems in which correlated ionic motions in the SPE bulk material are responsible for ionic conductivity. This variation is well fitted to a Jonscher expression σ′(ω) = σ0[1 + (ω/ω0)p] where σ0 is the dc conductivity, ω0 the characteristic angular frequency relaxation and p is the fractional exponent between 0 and 1. For a prototype membrane with composition 0.9PVOH − 0.1LiClO4 + 7 wt.%Al2O3, it was found that the temperature dependence of σ0 and ω0, may be described by the VTF relationship, ? = ?0 exp[−B/(T − T0)], with approximately the same constant B and reference temperature T0, indicating that ion mobility is coupled to the motions of the polymer chains. Moreover, p decreased with increasing temperature, from 0.68 at T = 319 K, to 0.4 at T = 437 K, indicating weaker correlation effects among mobile ions when the temperature is increased.  相似文献   

2.
Ce2(WO4)3 ceramics have been synthesized by the conventional solid-state ceramic route. Ce2(WO4)3 ceramics sintered at 1000 °C exhibited ?r = 12.4, Qxf = 10,500 GHz (at 4.8 GHz) and τf = −39 ppm/°C. The effects of B2O3, ZnO–B2O3, BaO–B2O3–SiO2, ZnO–B2O3–SiO2 and PbO–B2O3–SiO2 glasses on the sintering temperature and microwave dielectric properties of Ce2(WO4)3 were investigated. The Ce2(WO4)3 + 0.2 wt% ZBS sintered at 900 °C/4 h has ?r = 13.7, Qxf = 20,200 GHz and τf = −25 ppm/°C.  相似文献   

3.
Polymer electrolytes based on poly(vinyl alcohol) (PVOH) and lithium dihydrogen-phosphate (LiH2PO4) with molar ratio of x = 0.07, 0.10 and 0.14 were prepared in order to investigate the mechanism of ionic motion. Admittance spectroscopy measurements were used to study electrical conductivity relaxation on both anhydrous and hydrated samples in the 5 Hz to 13 MHz frequency range and temperatures ranging from 25 to 150 °C. The conductance, G, shows dispersion above a crossover frequency, fp. This behavior is typical of systems in which correlated ionic motions in the bulk material are responsible for ionic conductivity. For hydrated samples, results reveal that the temperature dependence of the dc-conductivity, σ0 and the characteristic frequency, fp, shows Arrhenius-type behavior with the same energy, Eσ. However, for anhydrous conductivity, a Vogel-Tamman-Fulcher (VTF) behavior is shown for both σ0(T) and fp(T), with the same pseudo activation energy, B and Bσ, respectively, thus indicating that they are correlated with chain mobility.  相似文献   

4.
This study reports on the synthesis of polycrystalline samples of (Na0.5Bi0.5)(1−x)BaxTi(1−x)(Fe0.5Nb0.5)xO3 with x=0, 0.025, 0.05, 0.075, and 0.1, using the solid-state reaction technique. It investigates the effects of the substitution of sodium and bismuth by barium in the A site and of titanium by iron and niobium in the B site with regard to the free NBT symmetry and dielectric properties were investigated. The crystallographic and dielectric properties were also investigated. The diffractograms showed that all the samples had a single phase character. The increase of ceramic lattice parameters induced an increase in the size of the perovskite lattice. This increase was caused by the increase of the radii of the A and B sites. Room temperature X-ray data revealed that the ceramic structures underwent a gradual distortion with the increase in the composition fraction. Dielectric permittivity was measured in the temperature range of 120–780 K with frequencies ranging from 1 to 103 KHz. Three anomalies, namely Td, T1 and Tm, were detected and noted to coexist at lower Td and Tm as the rate of substitutions increased. All the samples exhibited a diffuse phase transition and implied better dielectric permittivity maxima values at temperatures approaching room temperature, since the substitution rate values increased more than that of pure NBT. A relaxor behavior with ΔTm=14 K and ε'rmax=3876 at 1 kHz was observed for (Na0.5Bi0.5)0.9Ba0.1Ti0.9(Fe0.5Nb0.5)0.1O3 ceramic.  相似文献   

5.
Bismuth-doped barium–strontium–titanate ceramics of the formula (Ba0.8Sr0.2)(1−1.5y)BiyTiO3 were prepared using a conventional solid-state reaction method. The structure, dielectric properties, and ferroelectric relaxor behaviour of all compositions were thoroughly investigated. The findings revealed a broad dielectric anomaly and a shift in dielectric maxima towards higher temperatures with increasing frequency. The diffuseness degree indicator γ was about 1.68, and dielectric relaxation was noted to follow the Vogel–Fulcher relationship, with Tf=185 K, f0=1.18×1010 Hz, and Ea=0.35 eV, which further supported the spin-glass-like properties of BBSTs. The latter were also noted to display significant ferroelectric relaxor behaviour that could be attributed to the presence of Bi3+ doping ions. The degree of relaxation behaviour was noted to increase with the increase in bismuth concentration. Raman spectra were investigated as a function of temperature, and the findings confirmed the results from X-ray and dielectric measurements. Among the compositions assayed in this solid solution, 10% Bi-doped Ba0.8Sr0.2TiO3 yielded promising relaxor properties that make it a strong candidate for future industrial application in the production of efficient and eco-friendly relaxor ferroelectric materials.  相似文献   

6.
Zhirong Fan 《Polymer》2009,50(15):3431-34
Hyperbranched (hb) aromatic polyesters with phenolic end groups were synthesized according to the A2 + B3 approach both, by solution polymerization and by melt (bulk) polymerization with different monomer ratios (A2:B3). The hb polyesters produced from solution polymerization exhibited higher yields, molar masses and glass transition temperature (Tg) compared to the products prepared in the melt. The resulting hb aromatic polyesters from the A2 + B3 approach were also compared with their properties to hb aromatic polymers produced from the well known AB2 monomer 3,5-bis(trimethylsiloxy)benzoyl chloride. Both types of hb aromatic polyesters possess high Tg, high thermal stability and good solubility in common organic solvents. A typical melt viscosity behavior with shear thinning effect was also observed for both. Thus similar polymer properties compared to melt-condensed products were obtained with the A2 + B3 approach by solution polycondensation possessing the advantage of easy monomer availability and much milder polymerization conditions (at room temperature in solution) compared to the AB2 approach.  相似文献   

7.
The nucleation and crystallization of MgO-B2O3-SiO2 (MBS) glass were studied by means of a non-isothermal, thermal analysis technique, X-ray diffraction and scanning electron microscopy. The temperature range of the nucleation and the temperature of the maximum nucleation rate for MBS glass were determined from the dependences of the inverse temperature at the DSC peak (1/Tp) and the maximum intensity of the exothermic DSC crystallization peak ((δT)p) on the nucleation temperature (Tn). For MBS glass the nucleation occurred at 600-750 °C, with the maximum nucleation rate at 700 °C, whereas the nucleation and crystal growth processes overlapped at 700 °C < T ≤ 750 °C. The analyses of the non-isothermal data for the bulk MBS glass using the most common models (Ozawa, Kissinger, modified Kissinger, Ozawa-Chen, etc.) revealed that the crystallization of Mg2B2O5 was three-dimensional bulk with a diffusion-controlled crystal growth rate, that n = m = 1.5 and that the activation energy for the crystallization was 410-440 kJ/mol.  相似文献   

8.
This study investigated the effect of LiNbO3 modification on the dielectric, ferroelectric and electromechanical strain properties of Bi1/2Na1/2TiO3–SrTiO3 (BNT–ST) lead–free relaxor ceramics. The sintering temperature for lead–free BNT–ST relaxor ceramics was slightly decreased from 1175?°C to 1050?°C by modifying with LiNbO3. We found that the sintering temperature affects the dielectric behavior of 0.76BNT–(0.24?x)ST–xLiNbO3 (BNST–100xLN) ceramics at high temperature (near dielectric maximum temperature, Tm). The Tm for the low–temperature sintered sample was shifted to relatively higher temperature by comparison with the high–temperature sintered samples. Furthermore, the degradation of dielectric behavior near Tm in low–temperature sintered BNST–2LN ceramics was revealed after poling treatment and seem to be related to the existence of a high temperature stabilized nonergodic relaxor phase. Accordingly, we assume that the stabilized nonergodic relaxor phase is responsible for the relatively late transition from ferroelectrics to the relaxor. Therefore, we obtained the improved d33* of 616?pm/V as the highest value in low–temperature sintered BNST–2LN ceramics.  相似文献   

9.
The preparation and dielectric properties of 3ZnO·B2O3 ceramics were investigated. Dense 3ZnO·B2O3 ceramics were obtained as sintered in the temperature range from 950 to 1000 °C for 3 h. The X-ray diffraction showed that the obtained ceramics were of a monoclinic 3ZnO·B2O3 structure. The ceramic specimens fired at 955 °C for 1 h exhibited excellent microwave dielectric properties: ?r ∼ 6.9, Q × f ∼ 20,647 GHz (@6.35 GHz), and τf ∼ −80 ppm/°C. The dependences of relative density, ?r, and Q × f of ceramics sintered at 955 °C on sintering soaking time showed that they all reached their plateaus as the soaking time was up to 60 min. Meanwhile, 3ZnO·B2O3 ceramics had no reaction with silver during cofiring, indicating it is a potential candidate for low-temperature cofired ceramic (LTCC) substrate.  相似文献   

10.
D. Kilburn  G. Dlubek  J. Pionteck 《Polymer》2006,47(22):7774-7785
Free volume data from positron annihilation lifetime spectroscopy (PALS) experiments are combined with a Simha-Somcynsky (S-S) equation of state analysis of pressure-volume-temperature (PVT) data to model free volume contributions to structural mobility in a series of poly(n-alkyl methacrylate)s. From the PALS data the glass transition temperature, Tg, decreases (from 382 to 224 ± 5 K) and a given mean free volume is observed at lower temperatures as the side-chain length increases (going from methyl- to hexyl-). This is evidence of an internal plasticization whereby the side-chains reduce effective packing of molecules. By comparing PALS and PVT data, the hole number per mass unit, Nh′, is calculated using different methods; this varies between 0.54 and 0.86 × 1021 g−1. It is found that the extrapolated free volume becomes zero at a temperature T0′ that is smaller than the Vogel temperature T0 of the α-relaxation. The α-relaxation frequencies can be fitted by the free volume theory of Cohen and Turnbull, but only when the free volume Vf is replaced by (Vf − ΔV) where ΔV( = Ef(T0 − T0′), Ef is the thermal expansivity of Vf) varies between 0.060 and 0.027 ± 0.003 cm3/g, decreasing with side-chain length, apart from poly(n-hexyl methacrylate) where ΔV increases to 0.043 ± 0.003 cm3/g. One possible interpretation of this is that the α-relaxation only occurs when, due to statistical reasons, a group of m or more unoccupied S-S cells are located adjacent to one another. m is found to vary between 8 and 2 for poly(methyl methacrylate) and poly(n-butyl methacrylate), respectively. We found that no specific feature in the free volume expansion was consistently in coincidence with the dynamic crossover.  相似文献   

11.
Bi2O3 was selected as liquid phase sintering aid to lower the sintering temperature of La(Mg0.5Ti0.5)O3 ceramics. The sintering temperature of La(Mg0.5Ti0.5)O3 ceramics is generally high, about 1600 °C. However, the sintering temperature was significantly lowered about 275 °C from 1600 °C to 1325 °C by incorporating in 15 mol% Bi2O3 and revealed the optimum microwave dielectric properties of dielectric constant (?r) value of 40.1, a quality factor (Q × f) value of 60,231 GHz, and the temperature coefficient (τf) value of 70.1 ppm/°C. During all addition ranges, the relative dielectric constants (?r) were different and ranged from 32.0 to 41.9, the quality factors (Q × f) were distributed in the range of 928–60,231 GHz, and the temperature coefficient (τf) varies from 0.3 ppm/°C to 70.3 ppm/°C. Noticeably, a nearly zero τf can be found for doping 5 mol% Bi2O3 sintering at 1325 °C. It implies that nearly zero τf can be achieved by appropriately adjusting the amount of Bi2O3 additions and sintering temperature for La(Mg0.5Ti0.5)O3 ceramics.  相似文献   

12.
Mutiferroic materials like bismuth ferrite BiFeO3 have attracted much interest in the last decade due to their promising potential for such applications as spintronics and magnetoelectric data storage devices. On the other hand, relaxor ferroelectrics have been intensively studied for their complex structures with quenched disorder and polar nanoregions which play an important role in their outstanding piezoelectric performance. Much less studied are the single-phase multiferroics that exhibit ferroelectric and/or magnetic relaxor behavior and the correlation between their structure and intricate magneto-electric interactions. In this work, we investigate the evolution of the structure and relaxor behavior in the solid solution between the complex perovskite multirelaxor Pb(Fe2/3W1/3)O3 [PFW] and canonical multiferroic BiFeO3 [BFO], (1-x)PFW-xBFO (with a solubility limit of x = 0.30). The temperature dependences of the dielectric permittivity and loss tangent measured in the frequency range from 100 Hz to 1 MHz indicate characteristic relaxor ferroelectric properties for compositions of x ≤ 0.15, with a frequency-dependent dielectric permittivity peak and its temperature, Tm, satisfying the Vogel-Fulcher law. Detailed studies of the evolution of the relaxor behavior with composition reveal that Tm decreases firstly with a small amount (x = 0.05) of BFO substitution and then increases with further increase of BFO concentration. The degree of relaxor character, as defined by ΔTm [Tm (1 MHz) - Tm (100 Hz)], increases monotonously with increasing BFO content, signifying an enhancement of relaxor behavior with BFO substitution, which is confirmed by the Lorenz-type quadratic variation of the static permittivity. A temperature - composition phase diagram is constructed in terms of the characteristic Burns temperature (TB) and freezing temperature (Tf), which delimits a paraelectric state (PE) above TB, a non-ergotic relaxor state (NR) below Tf, and an ergotic relaxor state (ER) in between. The observed enhancement of relaxor behavior is explained by an increase in the number and size distribution of polar nanoregions in the ER phase, resulting from increased compositional and charge disorders as a result of BFO substitution. The evolution of relaxor behavior and its microscopic mechanisms studied in this work are insightful for a better understanding the multirelaxor properties in multiferroics. Moreover, further substitution of BFO (x ≥ 0.2) flattens the permittivity curves and leads to a temperature-stable variation of high dielectric constant (≈ 103) in a wide temperature range, making the PFW-BFO solid solution attractive for such applications as high energy density capacitors.  相似文献   

13.
The complex perovskite oxide Ba(Zn1/3Nb2/3)O3 (BZN) has been studied for its attractive dielectric properties which place this material interesting for applications as multilayer ceramics capacitors or hyperfrequency resonators. This material is sinterable at low temperature with combined glass phase–lithium salt additions, and exhibits, at 1 MHz very low dielectric losses combined with relatively high dielectric constant and a good stability of this later versus temperature. The 2 wt.% of ZnO–SiO2–B2O3 glass phase and 1 wt.% of LiF-added BZN sample sintered at 900 °C exhibits a relative density higher than 95% and attractive dielectric properties: a dielectric constant ?r of 39, low dielectrics losses (tan(δ) < 10−3) and a temperature coefficient of permittivity τ? of 45 ppm/°C−1. The 2 wt.% ZnO–SiO2–B2O3 glass phase and 1 wt.% of B2O3-added BZN sintered at 930 °C exhibits also attractive dielectric properties (?r = 38, tan(δ) < 10−3) and it is more interesting in terms of temperature coefficient of the permittivity (τ? = −5 ppm/°C). Their good dielectric properties and their compatibility with Ag electrodes, make these ceramics suitable for L.T.C.C applications.  相似文献   

14.
Ceramic samples based on ZnO-Nb2O5-TiO2 compositions have been prepared using solid state ceramic route. The work was carried out over a wide range of initial ZnNb2O6 and Zn0.17Nb0.33Ti0.5O2 compounds concentration. The crystal structure and microstructure developments were studied using X-ray diffraction (XRD) and scanning electron microscopy (SEM). It was shown that the phase compositions of the samples present itself a columbite type and mixture of two phases—solid solutions of columbite and rutile types.The sintering behavior, permittivity, its temperature coefficients and quality factor had been characterized for ceramic samples in depending on compositions. The permittivity of the samples in this system is within the limits from 24 to 80, τ? from 150 to −560 ppm/°C. For the samples with τ? ∼ 0, ?r ∼ 43.8 and Q·f = 35000 GHz at f = 9 GHz. The comparatively low sintering temperature (≤1080 °C) and high dielectric properties in microwave range make these ceramics promising for application in electronics.  相似文献   

15.
yPb(In1/2Nb1/2)O3-(1 − x − y)Pb(Mg1/3Nb2/3)O3-xPbTiO3 (yPIN-(1 − x − y)PMN-xPT) polycrystalline ceramics with morphotropic phase boundary (MPB) compositions were synthesized using columbite precursor method. X-ray diffraction results indicated that the MPB of PIN-PMN-PT was located around PT = 0.33-0.36, confirmed by their respective dielectric, piezoelectric and electromechanical properties. The optimum properties were found for the MPB composition 0.36PIN-0.30PMN-0.34PT, with dielectric permittivity ?r of 2970, piezoelectric coefficient d33 of 450 pC/N, planar electromechanical coupling kp of 49%, remanent polarization Pr of 31.6 μC/cm2 and TC of 245 °C. According to the results of dielectric and pyroelectric measurements, the Curie temperature TC and rhombohedral to tetragonal phase transition temperature TR-T were obtained, and the “flat” MPB for PIN-PMN-PT was achieved, indicating that the strongly curved MPB in PMN-PT system was improved by adding PIN component, offering the possibility to grow single crystals with high electromechanical properties and expanded temperature usage range (limited by TR-T).  相似文献   

16.
The X-ray diffraction patterns of (Na2/3Pb1/3)(Mn1/2Nb1/2)O3 ceramics were measured within 15–850 K temperature range. The anomaly in the thermal expansion temperature dependence occurred in 250–365 K range. The generalised Cole–Cole model was proposed to describe the measured effective electric permittivity influenced by high electric conduction and the coexistence of two contributions ?*(T,f) = ?*lattice + ?*carriers was considered. The analysis of the electric permittivity and conduction exhibited two relaxation processes. The electric conduction relaxation characteristic time values indicated the small polaron mechanism with τ0 ≈ 10−13 s occurring in 240–345 K range and the ionic mechanism with τ0 ≈ 10−11 s involved in the other relaxation occurring in the 320–510 K range. The ionic relaxation process was ascribed to a subsystem of defects, which was weakly interrelated to the anomaly in thermal expansion of the (Na2/3Pb1/3)(Mn1/2Nb1/2)O3 ceramics. The Gate model was proposed to describe the ionic relaxation mechanism.  相似文献   

17.
Glass phases showing high ionic conductivity at room temperature were prepared through a rapid quenching of the molten mixtures of the system AgIAg2OB2O3 (a fixed Ag2O/B2O3 = 1 molar ratio was always considered): the obtained specimens were homogeneous and transparent cylindrical blocks.Disk shaped cells prepared with such specimens did not show any grain-grain effect as supported by the comparison between four electrodes dc and ac conductivity determinations.A less than 10?9(ohm cm)?1 electronic conductivity was found.According to X-rays diffraction and DTA investigations, XAgI > 0.8 samples contained crystallized AgI, whereas 0.1 < XAgI < 0.8 samples could be considered actual vitreous homogeneous phases.AgI contents lower than 10 mole% were not considered due to the observed presence of segregated metallic silver.Room temperature density and conductivity data showed a regular behaviour vs XAgI in the vitreous phases range, whereas an evident discontinuity was observed about XAgI = 0.8.Linear fits in the Arrhenius plots of the bulk conductivity were obtained in the 120 K?Tg (glass transition temperature) range: the corresponding activation energies, as well as the high room temperature conductivities, allowed to closely compare these vetrous phases with the so called “superionic” conductors.  相似文献   

18.
The effects of substitution of (Zn1/3Nb2/3) for Ti on the sintering behavior and microwave dielectric properties of Ba3Ti4−x(Zn1/3Nb2/3)xNb4O21 (0 ≤ x ≤ 4) ceramics have been investigated. The dielectric constant (?r) and the temperature coefficient of the resonant frequency (τf) of Ba3Ti4−x(Zn1/3Nb2/3)xNb4O21 ceramics decreased with increasing x. However, the Q × f values enhanced with the substitution of (Zn1/3Nb2/3) for Ti. It was found that a small amount of MnCO3-CuO (MC) and ZnO-B2O3-SiO2 (ZBS) glass additives to Ba3Ti4−x(Zn1/3Nb2/3)xNb4O21 (x = 2) ceramics lowered the sintering temperature from 1250 to 900 °C. And Ba3Ti4−x(Zn1/3Nb2/3)xNb4O21 (x = 2) ceramics with 1 wt% MC and 1 wt% ZBS sintered at 900 °C for 2 h showed excellent dielectric properties: ?r = 53, Q × f = 14,600 GHz, τf = 6 ppm/°C. Moreover, it has a chemical compatibility with silver, which made it as a promising material for low temperature co-fired ceramics technology application.  相似文献   

19.
TiO2 based ceramic/glass composites were prepared by a non-reactive liquid phase sintering (NLPS) using zinc borosilicate (ZBS) glass having the deformation temperature of 588 °C. The compounds of Zn2SiO4 and Zn4B6O13 were formed after the sintering process, indicating that the ZBS glass was a non-reactive one in this system. For TiO2/50 vol% ZBS glass composite, the two-stage sintering behavior was conducted as the sintering temperature increased. The former might be correlated to the NLPS process and the latter appeared to be related to the crystallization. The dielectric constant (?r) was mainly affected by the porosity and obeyed the logarithmic mixing rule. The quality factor (Q × f0) showed an increase and then a steep decrease after the maximum at 850 °C. TiO2/50 vol% ZBS glass composite sintered at 900 °C demonstrated 36 in the dielectric constant (?r) and 7500 GHz in the quality factor (Q × f0) for an application to LTCC filters.  相似文献   

20.
A new compound of barium bismuth neodymium titanate BaBi3.5Nd0.5Ti4O15 was synthesized using the traditional solid-state reaction method. X-ray diffraction analysis confirmed the compound to be a layered tetragonal structure and Raman spectrum indicated that Nd ions occupy the A site. The plate-like morphology with average grain size about 2–4 μm was observed by a scanning electron microscope (SEM). A precision impedance analyzer was used to measure the dielectric properties and impedance spectroscopy of the ceramics. The results show that the temperature of dielectric constant maximum (Tm), the room temperature dielectric constant (εr) and loss (tan δ) at 100 kHz are 287° C, 326 and 0.017, respectively. The modified Curie–Weiss law was used to describe the relaxor behavior of the ceramics which was attributed to the A site cationic disorder. The remnant polarization (2Pr) of the sample was observed to be 1.27 μC/cm2 at room temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号