首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The ternary system of 0.56Pb(Ni1/3Nb2/3)O3-0.10Pb(Zn1/3Nb2/3)O3-0.34PbTiO3 (0.56PNN-0.10PZN-0.34PT) ceramics were prepared by conventional solid-state reaction method via straight mixed oxide method, columbite precursor method and B-site oxide mixing route. X-ray diffraction (XRD) measurement demonstrated that both the tetragonal and rhombohedral phases coexist in the B-site oxide mixing route prepared ceramics accompanied by the largest content of perovskite phase of 95.18%. The 0.56PNN-0.10PZN-0.34PT ceramics prepared by the straight mixed oxide method and the B-site oxide mixing route exhibit rather homogeneous microstructure. As a comparison, in the columbite precursor method prepared ceramics nebulous granules and octahedral or other polyhedral morphology grains are observed. All the sintered ceramics exhibit diffused ferroelectric phase transition where the dielectric response peaks are broad, diffused and strongly frequency dependent. However, the temperature of dielectric maximum (Tm) increases greatly from 398.0 K of the 0.56PNN-0.10PZN-0.34PT ceramics prepared by the B-site oxide mixing route to 423.3 K of the ones prepared by the straight mixed oxide method. Saturated and symmetric P-E hysteresis loops are observed in all the sintered ceramics, where the B-site oxide mixing route prepared ceramics exhibit large value of remanent polarization (Pr) of 17.13 μC/cm2 and the least value of coercive field (Ec) of 11.99 kV/cm. Piezoelectric constant (d33) exhibits the largest value of 449 pC/N for the ceramics prepared by the B-site oxide mixing route. Such results are related to the phase composition, density and porosity of the ceramics.  相似文献   

2.
Stabilization of a perovskite structure by solid-state reaction in as-yet unreported Pb(Zn1/2W1/2)O3 ceramics was attempted with compositional modification. A wide range of fractions of Pb(Fe2/3W1/3)O3 were initially introduced into the host material, and 20?mol% Pb(Mg1/2W1/2)O3 was subsequently added to the resulting composition in order to enhance perovskite formation. The perovskite development yield of 62.5% (without any fraction of Pb(Fe2/3W1/3)O3 introduced) increased with Pb(Fe2/3W1/3)O3 contents and finally reached 99.9%. The lattice parameters of the perovskite structure in the cubic symmetry range decreased steadily from 0.4002 to 0.3979?nm with increasing Pb(Fe2/3W1/3)O3. The relative permittivity values of the ceramics increased from 72 to 4910 (1?MHz) with increasing Pb(Fe2/3W1/3)O3. By contrast, the dielectric maximum temperatures in the cubic perovskite range changed only slightly from -111 to ?124?°C (1?MHz), quite insensitive to the compositional modification. Meanwhile, the phase transition changed gradually from sharp to diffuse modes with the Pb(Fe2/3W1/3)O3 substitution.  相似文献   

3.
New ternary compositions in the Pb(Mg1/3Nb2/3)O3-Pb(Yb1/2Nb1/2)O3–PbTiO3 (PMN-PYbN-PT) system were prepared using 0.5Pb(Yb1/2Nb1/2)O3-0.5PbTiO3 (PYbNT) and (1-x)Pb(Mg1/3Nb2/3)O3–xPbTiO3 (x = 0.26; PMNT26 or x = 0.325; PMNT32.5) powders synthesized via the columbite method. Dense (≥ 96% of theoretical density) ceramics with PMN/PYbN mole ratios of 25/75 (R-25), 50/50 (R-50) and 75/25 (R-75T and R-75R) were fabricated by reactive sintering at 1000 °C for 4 h. Therefore, incorporation of PYbNT to PMNT successfully decreased sintering temperature of PMNT from 1200 °C-1250 °C to 1000 °C. Samples with higher density and perovskite ratio together with lower weight loss possessed higher dielectric and piezoelectric values in each composition. The R-75 samples had remanent polarization (Pr) values of 34-36 μC/cm2 and piezoelectric charge coefficient (d33) of 560 pC/N. The sharp phase transition PMNT as a function of temperature became broader or more diffuse with increasing PYbNT content. However, PYbNT addition to PMNT increased Curie temperature (Tc) from 183 °C (for PMNT32.5) to 220-242 °C (for R-75T and R-75R) to 336 °C (for R-25). Therefore, these ternary compositions can be tailored for various high temperature applications due to the relatively higher Tc with enhanced piezoelectric and dielectric properties as compared to PMNT.  相似文献   

4.
Phase-formation stages in Ba(Mg1/3Ta2/3)O3, prepared by conventional and B-site precursor methods, were investigated and the results are compared. Appropriate powder mixtures were heat-treated at selected temperatures and characterized by X-ray diffraction (XRD) in order to examine the phase development. In the conventional route, monophasic perovskite, finally resulted at high temperatures, had several preliminary intermediate phases, whereas in the B-site precursor method the perovskite formed directly from the reactants. The perovskite formation using B-site precursors was completed at significantly lower temperatures.  相似文献   

5.
(BaxPb1−x)(Zn1/3Nb2/3)O3 (BPZN; x = 0.06–0.1) relaxor ferroelectric ceramics produced using a reaction-sintering process were investigated. Without any calcination involved, the mixture of raw materials was pressed and sintered directly. BPZN ceramics of 100% perovskite phase were obtained. Highly dense BPZN ceramics with a density higher than 98.5% of theoretical density could be obtained. Maximum dielectric constant Kmax 13,500 (at 75 °C), 19,600 (at 50 °C) and 14,800 (at 28 °C) at 1 kHz could be obtained in 6BPZN, 8BPZN and 10BPZN, respectively. Dielectric maximum temperature (Tmax) in BPZN ceramics via reaction-sintering process is lower than BPZN ceramics prepared via B-site precursor route.  相似文献   

6.
《Ceramics International》2022,48(16):23044-23050
Nd[(Mg1-xZnx)1/2Ti1/2]O3 perovskite ceramics (x = 0, 0.2, 0.4, 0.6, 0.8) are prepared by the solid-state reaction method. The effects of Zn2+ substitution on the structure, microstructure, especially the B-site 1:1 cation ordering and microwave dielectric properties have been investigated. Sintered Nd[(Mg1-xZnx)1/2Ti1/2]O3 ceramics all adopt dense microstructure, along with increased dimensional uniformity as Zn2+ substitution. All the ceramics are confirmed to have B-site 1:1 ordered monoclinic perovskite structure with P21/n space group. Atomic mass difference of B-site elements might be an important factor affecting the B-site 1:1 cation ordering. HRSTEM observation suggest that the doped Zn2+ cations have roughly entered the Mg2+ sites to promote 1:1 cation ordering. The degree of the 1:1 cation ordering can be negatively reflected by the full width at half maximum (FWHM) of F2g(B) mode at 372 cm?1 in Raman spectra. With Zn2+ doping, the degree of the 1:1 cation ordering first increases then decreases, and reaches its maximum at x = 0.6. Meanwhile the best combination of microwave dielectric properties is obtained, as εr = 31.4, Q × f = 74,000 GHz, τf = ?44 ppm/°C. It is found that the long-range ordering not only decreases the dielectric loss but also affects the dielectric constant, providing a theoretical foundation to understand further the correlation between ionic configuration and microwave dielectric properties.  相似文献   

7.
8.
Ceramic samples of a pseudo-binary system Pb(Mg1/2W1/2)O3-Pb(Fe2/3W1/3)O3 (PMW-PFW) were prepared by solid-state reaction. In addition, their compositions were modified by 20 mol% Pb(Zn1/2W1/2)O3 (PZW) doping in order to investigate the role of zinc in the perovskite formation and dielectric properties. The perovskite contents were ≥95.1% at the overall composition range, except for a significantly low value of 79.0% at 0.8PFW-0.2PZW. The extension of sintering time for PMW accelerated superstructure formation, resulting in the ordering factor increased up to 0.40 after 12 hours heat treatment. The maximum dielectric constant values increased with increasing PFW fractions. In comparison, the phase transition temperatures decreased sharply (by up to 161°C) at low concentrations of PFW, followed by mild changes (by up to 47°C) afterward. The dielectric constant spectra were analyzed in terms of diffuseness characteristics, which reflected the phase transition modes quite well.  相似文献   

9.
Ca(Fe1/2Ta1/2)O3 complex perovskite ceramics have been prepared and characterized in the crystal structure and microstructures, and the dielectric characteristics have been evaluated over a broad temperature and frequency range. There are two dielectric relaxations in low and high temperature ranges, respectively. Differing from the situation for Ba(Fe1/2Ta1/2)O3, Sr(Fe1/2Ta1/2)O3 and Ba(Fe1/2Nb1/2)O3, O2-annealing has little effect on the dielectric properties of Ca(Fe1/2Ta1/2)O3, and the much lower dielectric constant and low loss are ascribed to the low concentration of Fe2+ according to the XPS measurements. The microwave dielectric properties (at 5.38 GHz) for Ca(Fe1/2Ta1/2)O3 ceramics are obtained as: ?r = 30.7, Qf = 3070 GHz.  相似文献   

10.
Phase formation and dielectric properties of the compositions in the system [Pb(Fe1/2Nb1/2)O3]1_ x –[Pb(Zn1/3Nb2/3)O3] x were investigated as possible materials for multilayer ceramic capacitors. The formation of the phase with perovskite structure and dielectric properties of ceramics at room temperature in the entire composition range are presented. The undesirable pyrochlore phase can be suppressed up to x = 0.6 by adopting calcination of B-site oxides, followed by reaction with PbO. Compositions in the single-phase range can be sintered at less than 1000°C.  相似文献   

11.
A new solid solution of (1?x)Pb(Mg1/2W1/2)O3xPb(Zn1/2W1/2)O3 has been prepared in the form of ceramics by solid‐state reaction with composition x up to 30%. It is found that with the substitution of Zn2+ for Mg2+ on the B site of the of complex perovskite structure the antiferroelectric (AFE) Curie temperature TC of PMW increases from 40°C (x = 0) to 67°C (x = 30%), indicating an enhancement of antiferroelectric order, whereas, at the same time, the phase transition becomes more diffuse due to a higher degree of chemical inhomogeneity. X‐ray diffraction analysis indicates that the crystal structure adopts an orthorhombic space group (Pmcn) with a decrease in lattice parameter a, but an increase in b and c as the Zn2+ concentration increases. The low dielectric constant (~ 102), low dielectric loss (tanδ ≈ 10?3), linear‐field‐induced polarization, and significantly high breakdown field (~ 125 kV/cm) at room temperature make this family of dielectric materials a promising candidate for ceramic insulators.  相似文献   

12.
Pb (Mg1/3, Nb2/3)O3 perovskite type compound which can be sintered at low temperatures has a ligh dielectric permittivity and so can be used as multilayer ceramic capacitors. In this study we show that ceramic processes resulting in different mixtures of phases and different microstructures strongly influence the dielectric properties (dielectric permittivity, dissipation factor and resistivity). Only a careful characterization in each step of the process can allow the optimization of ceramics.  相似文献   

13.
《Ceramics International》2022,48(22):33219-33228
In this work, the Pb(Fe1-xCox)2/3W1/3O3 (PFCW) and Pb(Co1-yFey)1/2W1/2O3 (PCFW) ceramics with 0 ≤ x, y ≤ 1 were successfully fabricated by a solid-state reaction process. X–ray diffraction phase analysis indicate the formation of two different series of solid solutions with a perovskite structure and with the substitution limits of Fe for Co (in PFCW) and Co for Fe (in PCFW) are x = 0.35 and y ≈ 0.05, respectively. Based on the results of dielectric study of the PFCW ceramics, it was shown that a crossover from relaxor ferroelectric to ferroelectric with a diffuse phase transition takes place at x = 0.10. In the case of PCFW ceramics, the observed dielectric maxima correspond to the phase transitions at 320 K and 256 K. The peculiarities of the temperature dependencies of the thermally stimulated depolarization currents of PFCW and PCFW solid solutions were studied and discussed.  相似文献   

14.
CaTi1-x (Mg1/2W1/2)xO3 (x = 0, 0.02, 0.04, 0.06, 0.08) dielectric ceramics were synthesized via the traditional solid-state reaction method. Crystal structure and microwave dielectric properties of CaTi1-x (Mg1/2W1/2)xO3 system were systematically investigated based on chemistry bond theory (P–V-L theory) for the first time. The pure perovskite phase was obtained for all doped samples, as confirmed through the XRD and Rietveld refinement results. The lattice characteristics were closely related to the microwave dielectric properties. The bond ionicity, lattice energy, and bond energy affected the dielectric constant, quality factor, and temperature stability of the ceramic material. Through the use of (Mg1/2W1/2)4+ doped on B-site, the CaTi1-x (Mg1/2W1/2)xO3 system can maintain a high dielectric constant (εr > 100) while effectively reducing the τf value from 800 ppm/°C to less than 300 ppm/°C and improving the Q × f value to 9650 GHz (at 3.76 GHz).  相似文献   

15.
Pb[Mg1/3Nb2/3]O3 was gradually substituted by Bi[Mg2/3Nb1/3]O3 (BiMN) up to 30 mol%, with an overall modification by a constant fraction of PbTiO3 (10 mol%). Monophasic perovskite powders could be prepared via the B-site precursor route. Ceramic samples of the system showed a typical relaxor behavior of frequency-dependent dielectric dispersion. Values of the maximum dielectric constant decreased substantially with increasing BiMN concentration, whereas corresponding temperatures changed only moderately.  相似文献   

16.
Effects of Zn substitution for Mg on the crystal structure, lattice vibrations and microwave dielectric properties of Ba(Mg1/3,Ta2/3)O3 (BMT) ceramics were investigated. Raman scattering spectra for Ba([Mg1−xZnx]1/3Ta2/3)O3 (BMZT) ceramics, with x = 0, 0.2, 0.4, 0.6, 0.8 and 1.0, were measured at room temperature. The Raman result shows a dominance of 1:2 ordered structure at all Zn substitution contents. All Raman modes shift to lower frequencies with increasing Zn substitution. Higher Qf value correlates well with narrower width of the breathing Raman mode A1g(4) and larger relative intensity of 1:2 long-range-ordered mode Eg(2) in BMZT solid solution. First-principle calculation was performed to investigate the electronic structure of 1:2 ordered BMT and Ba(Zn1/3,Ta2/3)O3 (BZT). Covalent bond between Zn and O in BZT is much stronger than that between Mg and O in BMT due to the Zn 3d orbital. Zn substitution for Mg leads to longer and weaker Ta-O bonds, which may be one reason for the variation of Raman spectroscopy and microwave dielectric properties of BMZT system.  相似文献   

17.
《Ceramics International》2007,33(6):1083-1086
Powders of the Pb(Mg1/3Nb2/3)O3–Bi(Mg2/3Nb1/3)O3 (PMN–BMN) system with PbTiO3 (PT) substitution levels of 20 and 30 mol% were prepared by a B-site precursor method. Phase development as well as dielectric properties were examined. Two major phases, i.e., MgNb2O6 and [(Mg1/3Nb2/3)1/2Ti1/2]O2 (with small fractions of Mg4Nb2O9), developed in the B-site precursor compositions, whereas only monophasic perovskite formed after the addition of PbO/Bi2O3. Maximum dielectric constant values of the two systems decreased rapidly with increasing BMN concentration, but corresponding temperatures were lowest at intermediate compositions.  相似文献   

18.
Magnetoelectric composite ceramics of spinel ferrite Ni0.5Zn0.5Fe2O4 (NZFO) with high magnetic permeability and tetragonal perovskite Pb(Zr0.48Ti0.52)O3 (PZT) with high piezoelectric constant were synthesized by common solid state reaction method. XRD and SEM showed that high dense composite ceramics without any foreign phases were obtained. The ceramics showed excellent dielectric and magnetic properties, which were stable in a large frequency range. The dielectric peak became wider with the ferrite content in the permittivity spectrum with temperature. With the increase in the ferrite content, the magnetic Curie temperature shifted to higher temperature and closed to that of the pure ferrite. In addition, the magnetoelectric coefficient enhanced as the increase in the ferrite content. The properties of the composite ceramics could be adjusted by the ferrite content. These research results provided a powerful experimental basis for the sensor and transducer in microelectronic and microwave devices.  相似文献   

19.
Energy-storage properties of [(Bi1/2Na1/2)0.94Ba0.06]La(1−x)ZrxTiO3 (BNT-BLZT, x=0, 0.02, 0.04, and 0.06) lead-free anti-ferroelectric ceramics fabricated via the conventional sintering technique were first investigated. Calculation from the X-ray diffraction results reveals that BNT-BLZT ceramic possesses a single perovskite structure phase. In addition, the P–E hysteresis loops measured at room temperature show that the BNT-BLZT (x=0.02) ceramics obtain the maximum P value of 37.5 μC/cm2 and the largest energy-storage density Wmax is 1.58 J/cm3. The temperature dependence of dielectric permittivity εr and dielectric loss tanδ illustrate that the addition of Zr can improve the piezoelectric properties of BT-BLZT ceramics. These properties indicate that BNT-BLZT ceramics might be a promising lead-free anti-ferroelectric material for energy storage application.  相似文献   

20.
High electric field-induced strain with ultralow hysteresis, which is often generated based on electrostrictive effects in ferroelectric materials, is highly desired due to its potential applications in high-precision displacement actuators. In this paper, (1-x)[Pb(Mg1/3Nb2/3)O3-PbTiO3]-xBa(Zn1/3Nb2/3)O3 [(1-x)(PMN-PT)-xBZN] ceramics were fabricated by a solid-state reaction method. The effect of Ba(Zn1/3Nb2/3)O3 (BZN) content on dielectric and electrostrictive properties in relaxor ferroelectric PMN-PT solid solutions was investigated in detail by dielectric spectra, polarization-electric field (P-E) hysteresis loops and strain-electric field (S-E) curves. With an increasing BZN content, the temperature stability of the dielectric permittivity of (1-x)(PMN-PT)-xBZN is improved due to the formation of two coexistent phases. A high electrostrictive strain (~0.17% at 60?kV/cm) with an ultralow hysteresis (<10%) characteristic is obtained in a composition where x?=?0.1725. The strain versus polarization (S-P) curves measured from 30?°C to 130?°C can be well fitted based on a quadratic relation, suggesting the dominating role of the electrostrictive effect. The longitudinal electrostrictive coefficient Q33 for this system ranges from 0.0254?m4/C2 to 0.0318?m4/C2. Our results suggest that (1-x)(PMN-PT)-xBZN ferroelectric ceramics are potential candidates for applications in capacitors and high-precision displacement actuators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号