首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Ceramics International》2022,48(16):22985-22993
In this study, C/C–SiC and C/C–SiC–ZrC composites were prepared via chemical vapor infiltration and polymer infiltration pyrolysis, and the ablation mechanism under hypersonic oxygen-rich environmental conditions was investigated. The C/C–SiC composites demonstrate an excellent ablation resistance in a hypersonic oxygen-rich environment with a relatively low temperature and speed of approximately 1800 K and 1100 m/s, respectively. It is only in the ablation center area with higher temperatures that a certain degree of thermochemical ablation was observed. The mass and linear ablation rates of C/C–SiC composites (0.027 g/s and 0.117 mm/s, respectively) showed a significant increase in a hypersonic oxygen-rich environment with a temperature and velocity of approximately 2050 K and 2000 m/s, respectively. The high-temperature ablation resistance of ZrC-modified C/C–SiC–ZrC composites improved significantly. However, the ZrC ceramic component had a considerable impact on the ablation resistance of the material. The structural integrity of C/C–20SiC–30ZrC composites was relatively high in hypersonic oxygen-rich environments with a jet temperature and velocity of 2050 K and 2000 m/s, respectively, and mass and linear ablation rates were 0.012 g/s and 0.015 mm/s, respectively. When the ZrC content increased by 40%, the ablation resistance of the composite reduced significantly, whereas the mass and linear ablation rates increased to 0.043 g/s and 0.130 mm/s, respectively.  相似文献   

2.
C/SiC–ZrB2–ZrC composites were prepared by reactive melt infiltration (RMI) combined with vacuum pressure impregnation (VPI) method. B4C–C was first introduced into C/SiC composites with a porosity of about 30% by impregnating the mixture of B4C and phenol formaldehyde resin, followed by pyrolysis at 900 °C. The molten ZrSi2 alloy was then infiltrated into the porous C/SiC–B4C–C to obtain C/SiC–ZrB2–ZrC composites. The flexural strength was tested. The ablation behavior was investigated under an oxyacetylene torch flame. It has been found that the C/SiC–ZrB2–ZrC showed a high flexural strength and an excellent ablation resistance. The reactions between ZrSi2 alloy and B4C–C were studied, and a model based on these reactions was built up to describe the formation mechanism of the matrix.  相似文献   

3.
C/SiC composites with different additives (ZrO2 and ZrB2) were fabricated by CVI and CVD and their oxidation and ablation properties at 1700–1800 °C were investigated. Two different ablation test conditions, dry air and air mixed with water vapor, are compared. The ablation test results are reviewed, the weight loss rates are presented and the corresponding micro-structures are investigated in detail. The results show that in dry air, the weight loss rate of C/SiC composites is greater than those with ZrO2 and ZrB2 additives. However, in air mixed with water vapor (5 wt%) to simulate the hygrothermal condition, the weight loss rates of these three composites all become relatively smaller. A model is proposed to predict the weight loss of C/SiC composites and it agrees well with the experimental data.  相似文献   

4.
SiC coatings reinforced with SiC nanowires were prepared on carbon/silicon carbide (C/SiC) composites through chemical vapor reaction route and chemical vapor deposition (CVD). The SiC nanowires were introduced to mainly improve the interface bonding properties of the coating and C/SiC composites. The microstructure, phase composition, thermal cycling, and bonding strength of the SiCnws–SiC coating were investigated. After nine thermal cycles, the weight loss of the SiCnws–SiC-coated C/SiC composites was only 4.6 wt.%. Tensile test results show that the tensile strength of the SiCnws–SiC-coated C/SiC composites was more than 4.5–4.6 MPa. The introduction of SiC nanowires effectively improved interface bonding strength, thus enhancing the thermal cycling and mechanical properties of the coating.  相似文献   

5.
《应用陶瓷进展》2013,112(6):366-373
Abstract

Two dimensional C/C–ZrB2–ZrC–SiC composites were fabricated through precursor infiltration and pyrolysis process using a mixture of polycarbosilane and ZrB2 precursor and ZrC precursor as the impregnant. The microstructures, mechanical properties and ablation properties of the composites were investigated. The results showed that the homogeneity of the composite improved on using novel precursors that can dissolve with polycarbosilane through the formation of nanocomposite matrix. The flexural strength and fracture toughness first increased and then decreased on increasing the pyrocarbon content in the composite. Compared with the C/C–SiC composite, the ablation resistance of C/C–ZrB2–ZrC–SiC composite was greatly enhanced. The mass loss rate and linear recession rate exposed to the plasma torch were 1?7 mg/s and 1?8 μm/s, respectively. The formation of a ZrO2–SiO2 glassy layer on the surface significantly contributed to the excellent ablative property of the composite.  相似文献   

6.
Cyclic ablation behavior of C/C–ZrC–SiC composites prepared by precursor infiltration and pyrolysis process was studied using oxyacetylene torch. After repeated 30 s ablation for four times, the composites exhibited better ablation properties than those under single ablation for 120 s because of the lower surface temperature, and their linear and mass ablation rates were −3×10–4 mm/s and −2.29×10–3 g/s, respectively. A continuous ZrO2–SiO2 layer formed on the surface of center ablation region and acted as an effective barrier to the transfer of heat and oxidative gases into the inner material. Thermal stress induced by repeated impact of oxyacetylene led to some cracks on the ZrO2–SiO2 layer; however its destructive power was weaker than that of higher temperature. Stick like silica as grown silica nanowires were generated in the transition ablation region due to the evaporation of silicon oxide at appropriate temperature.  相似文献   

7.
Two-dimensional Cf/ZrC–SiC composites were fabricated through mold-pressing and polymer infiltration and pyrolysis (PIP) using T700SC plain weave fiber fabrics as reinforcements with ZrC precursor and polycarbosilane. The mechanical properties and microstructures of the composites with 34, 45, and 56% fiber fraction were investigated. All composites showed a typical non-brittle fracture behavior and a large amount of pulled-out fibers were observed on the fracture surface. The bending strength and elastic modulus of the composite with 56 vol% fiber fraction increased up to 582 ± 80 MPa and 167 ± 25 GPa, with increasing fiber fraction. The mass loss and linear recession rate of the composites during the oxy-propane torch test were 0.008 g/s and ?0.003 mm/s, respectively. The formation of a ZrSiO4 melt on the surface of the composite significantly contributed to the excellent ablative property of the 2D Cf/ZrC–SiC composites.  相似文献   

8.
To improve the oxidation protective ability of carbon/carbon composites, ZrB2–SiC gradient coating was prepared on the surface of C/C composites by an in-situ reaction method. The ZrB2–SiC gradient coating consisted of an inner ZrB2–SiC layer and an outer ZrB2–SiC–Si coating. The phase composition and microstructures of the multiphase coating were characterized by XRD, EDS and SEM. Results showed that the inner coating is mainly composed of ZrB2 and SiC, while the outer multiphase coating is composed of ZrB2, SiC and Si. The multilayer coating is about 200 μm in thickness, which has no penetration crack or big hole. The oxidation behavior of the coated C/C composites at 1773 K in air was investigated. Results show that the gradient ZrB2–SiC oxidation protective coating could protect C/C from oxidation for 207 h with only (4.56±1.2)×10−3 g/cm2 weight loss, owing to the compound silicate glass layer with the existence of thermally stable phase ZrSiO4.  相似文献   

9.
《Ceramics International》2021,47(22):31251-31258
A modification of the precursor infiltration pyrolysis (PIP) method was explored to prepare the integrated doped ceramic matrix and coating by the added SiC nanowires layer and shape-stabilization process. The epitaxial layer of SiC nanowires provided surficial attachments for the precursor. And the shape-stabilization process aggregated loose ceramic particles into a coating. Then the SiC nanowire-reinforced ZrC–SiC coating-matrix integrated C/C (S/SZ-CZ/C) composite was simply prepared by the modified PIP method. The bonding strength between the coating and matrix of the S/SZ-CZ/C composite was improved. Through the ablation test, the mass and linear ablation rate of the S/SZ-CZ/C composite were 0.46 mg/s and 0.67 μm/s, which were 60.34 % and 74.91 % lower than those of the SiC nanowire-reinforced C/C–ZrC (S/CZ/C) composite, respectively. The integration of the coating and matrix enabled the formation of a continuous oxide layer of molten SiO2 and ZrO2 in the ablation process, which helped to block the oxygen and heat during the ablation test. Thus the ablation resistance of the materials was systematically and effectively improved.  相似文献   

10.
Non-isothermal, isothermal and cyclic oxidation behavior of hot pressed ZrB2–20 (vol.%) SiC (ZS) and HfB2–20 SiC (HS) composites have been compared. Studies involving heating in thermogravimetric analyzer have shown sharp mass increases at 740 and 1180 °C for ZS, and mass gain till 1100 °C followed by loss for HS. Isothermal oxidation tests for 1, 24 and 100 h durations at 1200 or 1300 °C have shown formation of partially and completely stable oxide scales after ~24 h exposure for ZS and HS, respectively. X-ray diffraction, scanning electron microscopy and energy or wavelength dispersive spectroscopy has confirmed presence of ZrO2 or HfO2 in oxide scales of ZS or HS, respectively, besides B2O3–SiO2. Degradation appears more severe in isothermally oxidized ZS due to phase transformations in ZrO2; and is worse in HS on cyclic oxidation at 1300 °C with air cooling, because of higher thermal residual stresses in its oxide scale.  相似文献   

11.
A thermodynamic calculation on co-deposition of ZrC–SiC from the ZrCl4–C3H6–MTS–H2–Ar system was performed using the FactSage thermochemical software and verification experiments were performed. The surface diagrams of condensed-phases in this system were expressed as functions of the deposition temperature, total pressure, reactant ratio of MTS/(MTS+C3H6) and ratio of H2/(ZrCl4+MTS+C3H6), and the composition of the products was determined by the diagram. The calculation results indicate that their yields strongly depend on the molar ratio of the injected reactants and temperature, and ZrC–SiC can be co-deposited under a proper condition. The experimental results show that ZrC–SiC coating was successfully co-deposited on graphite substrates and carbon fibers according to the thermodynamic calculation.  相似文献   

12.
13.
《Ceramics International》2022,48(3):3206-3215
B4C modified HfB2-SiC coating for C/C substrate was designed to expand the application of HfB2-SiC based coating in low-medium temperature environment. The oxidation protection behavior of HfB2-SiC based ceramic coatings with and without B4C at 1073, 1273 and 1473 K was tested and analyzed. The experimental results reveal that the oxidative damage of HfB2-SiC coated C/C reduces by over 20% after introducing B4C, which may be due to the protection of borosilicate glass with more suitable viscosity during oxidation. Meanwhile, B4C can improve the oxidation protection ability of HfB2-SiC coating best at 1473 K. And the introduction of B4C can reduce the mass loss of HfB2-SiC coated C/C sample by 77.6% after oxidation for 58 h at 1473 K. The fluidity of glass film becoming better with temperature-rising, and the fluid borosilicate glass layer makes the coated samples have the best anti-oxidation properties at 1473 K among these three temperatures.  相似文献   

14.
《Ceramics International》2016,42(4):5171-5176
C/SiC–ZrC composites were prepared by a combining slurry process with precursor infiltration and pyrolysis, and then annealed from 1200 °C to 1800 °C. With rising annealing temperature, their mass loss rate increased, and the flexural strength and modulus decreased from 227.9 MPa to 41.3 MPa and from 35.3 GPa to 22.7 GPa, respectively. High-temperature annealing, which elevated thermal stress and strengthened interface bonding, was harmful to the flexural properties. However, it improved the ablation properties by increasing the crystallization degree of SiC matrix. The mass loss rate and linear recession rate decreased with increasing annealing temperature and those of the samples annealed at 1800 °C were 0.0074 g/s and 0.0011 mm/s respectively. Taking mechanical and ablation properties into consideration simultaneously, the optimum annealing temperature was 1600 °C.  相似文献   

15.
C/C–ZrC–SiC composites were prepared by precursor infiltration and pyrolysis process using a mixture solution of organic zirconium-containing polymer and polycarbosilane as precursors. Porous carbon/carbon (C/C) composites with density of 0.92, 1.21 and 1.40 g/cm3 were used as preforms, and the effects of porous C/C density on the densification behavior and ablation resistance of C/C–ZrC–SiC composites were investigated. The results show that the C/C preforms with a lower density have a faster weight gain, and the obtained C/C–ZrC–SiC composites own higher bulk density and open porosity. The composites fabricated from the C/C preforms with a density of 1.21 g/cm3 exhibit better ablation resistance with a surface temperature of over 2400 °C during ablation. After ablation for 120 s, the linear and mass ablation rates of the composites are as low as 1.02 × 10−3 mm/s and −4.01 × 10−4 g/s, respectively, and the formation of a dense and continuous coating of molten ZrO2 solid solution is the reason for their great ablation resistance.  相似文献   

16.
The TaB2–27.9 vol% SiC composite was synthesized by self-propagating high-temperature synthesis starting from mechanically activated Ta, B4C and Si reactants. The obtained powders were spark plasma sintered at 1800 °C and 20 MPa for 30 min total time, thus obtaining a 96% dense product. The latter one was characterized in terms of microstructure, hardness, fracture toughness, and oxidation resistance. The obtained results, particularly the fracture toughness, are promising when compared to those related to analogous materials reported in the literature and fabricated with similar and different processing routes.  相似文献   

17.
In this study, C/C–SiC–ZrC composites coated with SiC were prepared by precursor infiltration pyrolysis combined with reactive melt infiltration. The pyrolysis behavior of the hybrid precursor was investigated using thermal gravimetric analysis-differential scanning calorimetry, X-ray diffraction, and scanning electron microscopy techniques. The microstructure and ablation behavior of the composites were also investigated. The results indicate that the composites exhibit an interesting structure, wherein a ceramic coating composed of SiC and a small quantity of ZrC covers the exterior of the composites, and the SiC–ZrC hybrid ceramics are partially embedded in the matrix pores and distributed around the carbon fibers as well. The composites exhibit good ablation resistance with a surface temperature of over 2300 °C during ablation. After ablation for 120 s, the mass and linear ablation rates of the composites are 0.0026 g/s and 0.0037 mm/s, respectively. The great ablation resistance of the composites is attributed to the formation of a continuous phase of molten SiO2 containing SiC and ZrO2, which seals the pores of the composites during ablation.  相似文献   

18.
《Ceramics International》2020,46(1):156-164
Spark plasma sintering (SPS) route was employed for preparation of quadruplet ZrB2–SiC–ZrC–Cf ultrahigh temperature ceramic matrix composites (UHTCMC). Zirconium diboride and silicon carbide powders with a constant ZrB2:SiC volume ratio of 4:1 were selected as the baseline. Mixtures of ZrB2–SiC were co-reinforced with zirconium carbide (ZrC: 0–10 vol%) and carbon fiber (Cf: 0–5 vol%), taking into account a constant ratio of 2:1 for ZrC:Cf components. The sintered composite samples, processed at 1800 °C for 5 min and 30 MPa punch press under vacuumed atmosphere, were characterized by densitometry, field emission scanning electron microscopy, energy dispersive spectroscopy, X-ray diffractometry as well as mechanical tests such as hardness and flexural strength measurements. The results verified that the composite co-reinforced with 5 vol% ZrC and 2.5 vol% Cf had the optimal characteristics, i.e., it reached a relative density of 99.6%, a hardness of 18 GPa and a flexural strength of 565 MPa.  相似文献   

19.
Different types of dense 5–97% ZrO2–MgAl2O4 composites have been prepared using a MgAl2O4 spinel obtained by calcining a stoichiometric mixture of aluminium tri-hydroxide and caustic MgO at 1300 °C for 1 h, and a commercial yttria partially stabilized zirconia (YPSZ) powder as starting raw materials by sintering at various temperatures ranging from 1500 to 1650 °C for 2 h. The characteristics of the MgAl2O4 spinel, the YPSZ powder and the various sintered products were determined by X-ray diffraction (XRD), scanning electron microscopy (SEM), BET surface area, particle size analysis, Archimedes principle, and Vickers indentation method. Characterization results revealed that the YPSZ addition increases the sintering ability, fracture toughness and hardness of MgAl2O4 spinel, whereas, the MgAl2O4 spinel hampered the sintering ability of YPSZ when sintered at elevated temperatures. A 20-wt.% YPSZ was found to be sufficient to increase the hardness and fracture toughness of MgAl2O4 spinel from 406 to 1314 Hv and 2.5 to 3.45 MPa m1/2, respectively, when sintered at 1600 °C for 2 h.  相似文献   

20.
《Ceramics International》2015,41(6):7677-7686
Ablation behavior of ZrB2–SiC protective coating for carbon/carbon composites during oxyacetylene flame test at 2500 °C was investigated by analyzing the microstructure differentiation caused by the increasing intensity of ablation from the border to the center of the surface. After ablation, a continuous SiO2 scale, a porous SiO2 layer inlaid with fine ZrO2 nuclei, and a continuous ZrO2 scale respectively emerged in the border region, the transitional region, and the center region. In order to investigate the ablation microstructure in the initial stage, the sub-layer microstructure was characterized and found to be mainly formed by coral-like structures of ZrO2, which showed huge difference with the continuous structure of ZrO2 on the surface layer. A kinetic model concerning the thickness change induced by volatilization and oxidation during ablation was built to explain the different growth mechanisms of the continuous ZrO2 scale and the coral-like ZrO2 structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号