首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Alcohol dehydrogenases (ADH) are important tools for generating chiral α-hydroxyketones. Previously, only the ADH of Thauera aromatica was known to convert cyclic α-diketones with appropriate preference. Here, we extend the spectrum of suitable enzymes by three alcohol dehydrogenases from Citrifermentans bemidjiense (CibADH), Deferrisoma camini (DecADH), and Thauera phenylacetica (ThpADH). Of these, DecADH is characterized by very high thermostability; CibADH and ThpADH convert α-halogenated cyclohexanones with increased activity. Otherwise, however, the substrate spectrum of all four ADHs is highly conserved. Structural considerations led to the conclusion that conversion of diketones requires not only the expansion of the active site into a large binding pocket, but also the circumferential modification of almost all amino acid residues that form the first shell of the binding pocket. The constellation appears to be overall highly specific for the relative positioning of the carbonyl functions and the size of the C-ring.  相似文献   

3.
4.
A meso‐diaminopimelate dehydrogenase (DAPDH) from Clostridium tetani E88 (CtDAPDH) was found to have low activity toward the D ‐amino acids other than its native substrate. Site‐directed mutagenesis similar to that carried out on the residues mutated by Vedha‐Peters et al. resulted in a mutant enzyme with highly improved catalytic ability for the synthesis of D ‐amino acids. The crystal structures of the CtDAPDH mutant in apo form and in complex with meso‐diaminopimelate (meso‐DAP), D ‐leucine (D ‐leu), and 4‐methyl‐2‐oxopentanoic acid (MOPA) were solved. meso‐DAP was found in an area outside the catalytic cavity; this suggested a possible two‐step substrate‐binding mechanism for meso‐DAP. D ‐leu and MOPA each bound both to Leu154 and to Gly155 in the open form of CtDAPDH, and structural analysis revealed the molecular basis for the expanded substrate specificity of the mutant meso‐diaminopimelate dehydrogenases.  相似文献   

5.
A practical chemoenzymatic method for the synthesis of 9‐hydroxynonanoic acid and 1,9‐nonanedioic acid (i.e., azelaic acid) from oleic acid [(9Z)‐octadec‐9‐enoic acid] was investigated. Biotransformation of oleic acid into 9‐(nonanoyloxy)nonanoic acid via 10‐hydroxyoctadecanoic acid and 10‐keto‐octadecanoic acid was driven by a C‐9 double bond hydratase from Stenotrophomonas maltophilia, an alcohol dehydrogenase from Micrococcus luteus, and a Baeyer–Villiger monooxygenase (BVMO) from Pseudomonas putida KT2440, which was expressed in recombinant Escherichia coli. After production of the ester (i.e., the BVMO reaction product), the compound was chemically hydrolyzed to n‐nonanoic acid and 9‐hydroxynonanoic acid because n‐nonanoic acid is toxic to E. coli. The ester was also converted into 9‐hydroxynonanoic acid and the n‐nonanoic acid methyl ester, which can be oxygenated into the 9‐hydroxynonanoic acid methyl ester by the AlkBGT from P. putida GPo1. Finally, 9‐hydroxynonanoic acid was chemically oxidized to azelaic acid with a high yield under fairly mild reaction conditions. For example, whole‐cell biotransformation at a high cell density (i.e., 10 g dry cells/L) allowed the final ester product concentration and volumetric productivity to reach 25 mM and 2.8 mM h−1, respectively. The overall molar yield of azelaic acid from oleic acid was 58%, based on the biotransformation and chemical transformation conversion yields of 84% and 68%, respectively.

  相似文献   


6.
以30%H2O2作为氧化剂,在温和条件下,考察了三种Keggin型结构的杂多酸催化环酮Baeyer-Villiger氧化反应的性能。结果表明,在选择的三种杂多酸中,硅钨酸表现出最高的催化性能,能使大多数环酮转化成相应的内酯,转化率可以达到90%。并且,在优化反应条件以后,有很好的选择性。催化剂重复使用三次以后,催化活性和选择性并没有明显的降低。在相同条件下,磷钨酸和磷钼酸也表现了良好的催化活性和选择性。利用核磁共振(NMR)对反应后的产物进行了表征。  相似文献   

7.
Pyridoxal‐phosphate (PLP)‐dependent enzymes catalyse a remarkable diversity of chemical reactions in nature. A1RDF1 from Arthrobacter aurescens TC1 is a fold type I, PLP‐dependent enzyme in the class III transaminase (TA) subgroup. Despite sharing 28 % sequence identity with its closest structural homologues, including β‐alanine:pyruvate and γ‐aminobutyrate:α‐ketoglutarate TAs, A1RDF1 displayed no TA activity. Activity screening revealed that the enzyme possesses phospholyase (E.C. 4.2.3.2) activity towards O‐phosphoethanolamine (PEtN), an activity described previously for vertebrate enzymes such as human AGXT2L1, enzymes for which no structure has yet been reported. In order to shed light on the distinctive features of PLP‐dependent phospholyases, structures of A1RDF1 in complex with PLP (internal aldimine) and PLP ? PEtN (external aldimine) were determined, revealing the basis of substrate binding and the structural factors that distinguish the enzyme from class III homologues that display TA activity.  相似文献   

8.
Biotransformation of long‐chain fatty acids into medium‐chain α,ω‐dicarboxylic acids or ω‐aminocarboxylic acids could be achieved with biocatalysts. This study presents the production of α,ω‐dicarboxylic acids (e.g., C9, C11, C12, C13) and ω‐aminocarboxylic acids (e.g., C11, C12, C13) directly from fatty acids (e.g., oleic acid, ricinoleic acid, lesquerolic acid) using recombinant Escherichia coli‐based biocatalysts. ω‐Hydroxycarboxylic acids, which were produced from oxidative cleavage of fatty acids via enzymatic reactions involving a fatty acid double bond hydratase, an alcohol dehydrogenase, a Baeyer–Villiger monooxygenase and an esterase, were then oxidized to α,ω‐dicarboxylic acids by alcohol dehydrogenase (ADH, AlkJ) from Pseudomonas putida GPo1 or converted into ω‐aminocarboxylic acids by a serial combination of ADH from P. putida GPo1 and an ω‐transaminase of Silicibacter pomeroyi. The double bonds present in the fatty acids such as ricinoleic acid and lesquerolic acid were reduced by E. coli‐native enzymes during the biotransformations. This study demonstrates that the industrially relevant building blocks (C9 to C13 saturated α,ω‐dicarboxylic acids and ω‐aminocarboxylic acids) can be produced from renewable fatty acids using biocatalysis.

  相似文献   


9.
Enzymes often convert both physiological and non-physiological substrates with high stereoselectivity; yet, for some enzymes, opposite product chirality is observed. A possible explanation is the existence of hidden specificities becoming apparent when non-physiological substrates confer different substrate–enzyme interactions than the physiological substrate. To test this hypothesis, a series of α-methylated β-keto esters were converted with Tyl-KR1, a ketoreductase from polyketide synthesis in Streptomyces fradiae. The conversions of six substrates with different physicochemical properties exhibited enantioselectivities ranging from 84 % ee for R,R to 84 % ee for S,S, yet high and uniform diastereoselectivity (anti, d.r.>9:1). The exchange of a single atom, namely an oxygen ester instead of a thioester, led to almost complete loss of enantioselectivity (<5 % ee). An additional S,S-selective binding mode as a hidden specificity in Tyl-KR1 has been identified through molecular modeling and site-directed mutagenesis.  相似文献   

10.
Zinc‐dependent alcohol dehydrogenases (ADHs) are a class of enzymes applied in different biocatalytic processes ranging from lab to industrial scale. However, one drawback is the limited substrate range, necessitating a whole array of different ADHs for the relevant substrate classes. In this study, we investigated structural determinants of the substrate spectrum in the zinc‐dependent ADH carbonyl reductase 2 from Candida parapsilosis (CPCR2), combining methods of mutational analysis with in silico substrate docking. Assigned active site residues were genetically randomized, and the resulting mutant libraries were screened with a selection of challenging carbonyl substrates. Three variants (C57A, W116K, and L119M) with improved activities toward different substrates were detected at neighboring positions in the active site. Thus, all possible combinations of the mutations were generated and characterized for their substrate specificity, yielding several improved variants. The most interesting were a C57A variant, with a 27‐fold increase in specific activity for 4′‐acetamidoacetophenone, and the double mutant CPCR2 B16‐(C57A, L119M), with a 45‐fold improvement in the kcat?KM?1 value. The obtained variants were further investigated by in silico docking experiments. The results indicate that the mentioned residues are structural determinants of the substrate specificity of CPCR2, being major players in the definition of the active site. Comparison of these results with closely related enzymes suggests that these might even be transferred to other ADHs.  相似文献   

11.
报道了直接以黄樟油为原料,经硝化和氧化制备6 硝基胡椒基酸的新工艺。采用调整反应温度和硝酸浓度等因素对硝化反应进行了探讨;采用正交实验优化了氧化反应参数,获得了较好的工艺条件。  相似文献   

12.
Ubiquitin phosphorylation is emerging as an important regulatory layer in the ubiquitin system. This is exemplified by the phosphorylation of ubiquitin on Ser65 by the Parkinson's disease‐associated kinase PINK1, which mediates the activation of the E3 ligase Parkin. Additional phosphorylation sites on ubiquitin might also have important cellular roles. Here we report a versatile strategy for preparing phosphorylated ubiquitin. We biochemically and structurally characterise semisynthetic phospho‐Ser65‐ubiquitin. Unexpectedly, we observed disulfide bond formation between ubiquitin molecules, and hence a novel crystal form. The method outlined provides a direct approach to study the combinatorial effects of phosphorylation on ubiquitin function. Our analysis also suggests that disulfide engineering of ubiquitin could be a useful strategy for obtaining alternative crystal forms of ubiquitin species thereby facilitating structural validation.  相似文献   

13.
Highly regio‐ and enantioselective alcohol dehydrogenases BDHA (2,3‐butanediol dehydrogenase from Bacillus subtilis BGSC1A1), CDDHPm (cyclic diol dehydrogenase from Pseudomonas medocina TA5), and CDDHRh (cyclic diol dehydrogenase from Rhodococcus sp. Moj‐3449) were discovered for the oxidation of racemic trans‐cyclic vicinal diols. Recombinant Escherichia coli expressing BDHA was engineered as an efficient whole‐cell biocatalyst for the oxidation of (±)‐1,2‐cyclopentanediol, 1,2‐cyclohexanediol, 1,2‐cycloheptane‐diol, and 1,2‐cyclooctanediol, respectively, to give the corresponding (R)‐α‐hydroxy ketones in >99% ee and (S,S)‐cyclic diols in >99% ee at 50% conversion in one pot. Escherichia coli (BDHA‐LDH) co‐expressing lactate dehydrogenase (LDH) for intracellular regeneration of NAD+ catalyzed the regio‐ and enantioselective oxidation of (±)‐1,2‐dihydroxy‐1,2,3,4‐tetrahydronaphthalene to produce the corresponding (R)‐α‐hydroxy ketone in >99% ee and (S,S)‐cyclic diol in 96% ee at 49% conversion. Preparative biotransformations were also demonstrated. Thus, a novel and useful method for the one‐pot synthesis of both vicinal diols and α‐hydroxy ketones in high ee was developed via highly regio‐ and enantioselective oxidations of the racemic vicinal diols.

  相似文献   


14.
研制出一种新型PVC内润滑剂——高级脂肪酸甘油酯HB-10。以高级脂肪酸和甘油为原料,采用催化酯化法制得产品。确定了酯化反应最佳条件,进行重复性试验及毒性试验,产品质量符合SZQB 001-89要求,属于无毒物,在PVC透明玻璃纸和PVC透明片上应用,效果良好。可替代进口的润滑剂。  相似文献   

15.
The crystal structures of the haem domains of Ala330Pro and Ile401Pro, two single‐site proline variants of CYP102A1 (P450BM3) from Bacillus megaterium, have been solved. In the A330P structure, the active site is constricted by the relocation of the Pro329 side chain into the substrate access channel, providing a basis for the distinctive C? H bond oxidation profiles given by the variant and the enhanced activity with small molecules. I401P, which is exceptionally active towards non‐natural substrates, displays a number of structural similarities to substrate‐bound forms of the wild‐type enzyme, notably an off‐axial water ligand, a drop in the proximal loop, and the positioning of two I‐helix residues, Gly265 and His266, the reorientation of which prevents the formation of several intrahelical hydrogen bonds. Second‐generation I401P variants gave high in vitro oxidation rates with non‐natural substrates as varied as fluorene and propane, towards which the wild‐type enzyme is essentially inactive. The substrate‐free I401P haem domain had a reduction potential slightly more oxidising than the palmitate‐bound wild‐type haem domain, and a first electron transfer rate that was about 10 % faster. The electronic properties of A330P were, by contrast, similar to those of the substrate‐free wild‐type enzyme.  相似文献   

16.
The stability of unsaturated fatty acids to oxidation was monitored by following gas chromatographic (GC) analyses of headspace volatiles in comparison to changes in polyunsaturated fatty acids (PUFA) and increases in malonaldehydevia the 2-thiobarbituric (TBA) assay. Pure standards of linoleic acid (Lo) and n-3 fatty acids [eicosapentaenoic (EPA) and docosahexaenoic acid (DHA)] were added to headspace vials, equilibrated in air for 10 min, followed by heating at 80°C in teflon-capped vials for different time intervals. Headspace analysis showed increases in acetaldehyde, propenal, and propanal, corresponding to the oxidation of n-3 fatty acids, whereas hexanal production corresponded to losses of linoleic acid. The analysis of propanal by GC-headspace after only five minutes of heating appeared to be the most effective method of monitoring the oxidation of n-3 fatty acids, as indicated by correlations between TBA values and loss of PUFA. The oxidation of Lo, EPA and DHA appeared to be a function of the number of double bonds. Correlations between PUFA depletion, TBA values and volatile formation indicate that under the prescribed conditions of this experiment, GC-headspace analysis of propanal and pentane/hexanal is an excellent method for following the oxidation of selected n-3 fatty acids and linoleic acid.  相似文献   

17.
Thioglycoligases are engineered enzymes for the synthesis of thioglycosides that are derived from retaining glycosidases by replacing the acid/base catalyst. The optimal choice of substitution for the acid/base mutant is currently unknown, so to investigate this question a complete acid/base library of the model glycosidase Bacillus circulans xylanase (Bcx) was generated by using site‐saturation mutagenesis. A novel screening approach combining active site titration with semiquantitative product analysis by thin layer chromatography was established and used to evaluate specific activities of each mutant enzyme within crude cell lysates. The six most active Bcx variants were analyzed in more detail, a pH optimum of 8.5 was established and the identity of reaction products was confirmed. Optimal choices for substitution were small, preferably polar amino acids such as threonine, cysteine, and serine. We discuss the resultant data in the context of previously published studies on thioglycoligases.  相似文献   

18.
Chemical modification has been used to introduce the unnatural amino acid γ‐thialysine in place of the catalytically important Lys165 in the enzyme N‐acetylneuraminic acid lyase (NAL). The Staphylococcus aureus nanA gene, encoding NAL, was cloned and expressed in E. coli. The protein, purified in high yield, has all the properties expected of a class I NAL. The S. aureus NAL which contains no natural cysteine residues was subjected to site‐directed mutagenesis to introduce a cysteine in place of Lys165 in the enzyme active site. Subsequently chemical mutagenesis completely converted the cysteine into γ‐thialysine through dehydroalanine (Dha) as demonstrated by ESI‐MS. Initial kinetic characterisation showed that the protein containing γ‐thialysine regained 17 % of the wild‐type activity. To understand the reason for this lower activity, we solved X‐ray crystal structures of the wild‐type S. aureus NAL, both in the absence of, and in complex with, pyruvate. We also report the structures of the K165C variant, and the K165‐γ‐thialysine enzyme in the presence, or absence, of pyruvate. These structures reveal that γ‐thialysine in NAL is an excellent structural mimic of lysine. Measurement of the pH‐activity profile of the thialysine modified enzyme revealed that its pH optimum is shifted from 7.4 to 6.8. At its optimum pH, the thialysine‐containing enzyme showed almost 30 % of the activity of the wild‐type enzyme at its pH optimum. The lowered activity and altered pH profile of the unnatural amino acid‐containing enzyme can be rationalised by imbalances of the ionisation states of residues within the active site when the pKa of the residue at position 165 is perturbed by replacement with γ‐thialysine. The results reveal the utility of chemical mutagenesis for the modification of enzyme active sites and the exquisite sensitivity of catalysis to the local structural and electrostatic environment in NAL.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号