首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Fine-tuning of G protein-coupled receptor (GPCR) signaling is important to maintain cellular homeostasis. Recent studies demonstrated that lateral GPCR interactions in the cell membrane can impact signaling profiles. Here, we report on a one-step labeling method of multiple membrane-embedded GPCRs. Based on short peptide tags, complementary probes transfer the cargo (e. g. a fluorescent dye) by an acyl transfer reaction with high spatial and temporal resolution within 5 min. We applied this approach to four receptors of the cardiovascular system: the endothelin receptor A and B (ETAR and ETBR), angiotensin II receptor type 1, and apelin. Wild type-like G protein activation after N-terminal modification was demonstrated for all receptor species. Using FRET-competent dyes, a constitutive proximity between hetero-receptors was limited to ETAR/ETBR. Further, we demonstrate, that ETAR expression regulates the signaling of co-expressed ETBR. Our orthogonal peptide-templated labeling of different GPCRs provides novel insight into the regulation of GPCR signaling.  相似文献   

2.
Antifolate labels : Molecules that bind specifically and with high affinity to proteins can be developed into powerful tools for chemical biology. The interaction between substituted 5‐benzyl pyrimidines and dihydrofolate reductase can be exploited for chemically labeling fusion proteins in mammalian cells.

  相似文献   


3.
Fluorescence microscopy is an essential tool for the biosciences, enabling the direct observation of proteins in their cellular environment. New methods that facilitate attachment of photostable synthetic fluorophores with genetic specificity are needed to advance the frontiers of biological imaging. Here, we describe a new set of small, selective, genetically encoded tags for proteins based on a heterodimeric coiled‐coil interaction between two peptides: CoilY and CoilZ. Proteins expressed as a fusion to CoilZ were selectively labeled with the complementary CoilY fluorescent probe peptide. Fluorophore‐labeled target proteins were readily detected in cell lysates with high specificity and sensitivity. We found that these versatile interacting peptide (VIP) tags allowed rapid and specific delivery of bright organic dyes or quantum dots to proteins displayed on living cells. Additionally, we validated that either CoilY or CoilZ could serve as the VIP tag, which enabled us to observe two distinct cell‐surface protein targets with this one heterodimeric pair.  相似文献   

4.
Two series of dimeric ligands for a G‐protein‐coupled receptor were prepared that differ by the interconnecting spacer system. Biological evaluation revealed that both dimeric series exhibit unique biological properties relative to their monomeric counterparts.

  相似文献   


5.
6.
A series of homo‐ and heterodimeric compounds encompassing the follicle‐stimulating hormone receptor (FSHR) antagonist (R)‐ 1 and its inactive conformer (S)‐ 1 connected through ethylene glycol spacers of various lengths is described. Evaluation of these compounds reveals that dimeric compounds, with a spacer of sufficient length, bearing two active copies of the antagonist are more potent relative to dimeric compounds in which one of the active pharmacophores is replaced by an inactive conformer. Interestingly, the opposite trend is observed if a short spacer is used, indicating that these compounds may be valuable tools to study FSHR dimerization in greater detail.  相似文献   

7.
An increasing number of high-resolution structures of membrane-embedded ion channels (or soluble homologues) have emerged during the last couple of years. The most pressing need now is to understand the complex mechanism underlying ion-channel function. Time-resolved photoaffinity labeling is a suitable tool for investigating the molecular function of membrane proteins, especially when high-resolution structures of related proteins are available. However until now this methodology has only been used on the Torpedo nicotinic acetylcholine receptor (nAChR). nAChRs are allosteric cation-selective receptor channels that are activated by the neurotransmitter acetylcholine (ACh) and implicated in numerous physiological and pathological processes. Time-resolved photoaffinity labeling has already enabled local motions of nAChR subdomains (i.e. agonist binding sites, ion channel, subunit interface) to be understood at the molecular level, and has helped to explain how small molecules can exert their physiological effect, an important step toward the development of drug design. Recent analytical and technical improvements should allow the application of this powerful methodology to other membrane proteins in the near future.  相似文献   

8.
Antenna proteins play a major role in the regulation of light-harvesting in photosynthesis. However, less is known about a possible link between their sizes (oligomerization state) and fluorescence intensity (number of photons emitted). Here, we used a microscopy-based method, Fluorescence Correlation Spectroscopy (FCS), to analyze different antenna proteins at the particle level. The direct comparison indicated that Chromera Light Harvesting (CLH) antenna particles (isolated from Chromera velia) behaved as the monomeric Light Harvesting Complex II (LHCII) (from higher plants), in terms of their radius (based on the diffusion time) and fluorescence yields. FCS data thus indicated a monomeric oligomerization state of algal CLH antenna (at our experimental conditions) that was later confirmed also by biochemical experiments. Additionally, our data provide a proof of concept that the FCS method is well suited to measure proteins sizes (oligomerization state) and fluorescence intensities (photon counts) of antenna proteins per single particle (monomers and oligomers). We proved that antenna monomers (CLH and LHCIIm) are more “quenched” than the corresponding trimers. The FCS measurement thus represents a useful experimental approach that allows studying the role of antenna oligomerization in the mechanism of photoprotection.  相似文献   

9.
Protein aggregation involves the assembly of partially misfolded proteins into oligomeric and higher-order structures that have been associated with several neurodegenerative diseases. However, numerous questions relating to protein aggregation remain unanswered due to the lack of available tools for visualization of these species in living cells. We recently developed a fluorogenic method named aggregation tag (AggTag), and presented the AggTag probe P1 , based on a Halo-tag ligand, to report on the aggregation of a protein of interest (POI) in live cells. However, the Halo-tag-based AggTag method only detects the aggregation of one specific POI at a time. In this study, we have expanded the AggTag method by using SNAP-tag technology to enable fluorogenic and biorthogonal detection of the aggregation of two different POIs simultaneously in live cells. A new AggTag probe— P2 , based on a SNAP-tag ligand bearing a green solvatochromic fluorophore—was synthesized for this purpose. Using confocal imaging and chemical crosslinking experiments, we confirmed that P2 can also report both on soluble oligomers and on insoluble aggregates of a POI fused with SNAP-tag in live cells. Ultimately, we showed that the orthogonal fluorescence of P1 and P2 allows for simultaneous visualization of two different pathogenic protein aggregates in the same cell.  相似文献   

10.
The vibration of a cell membrane plays a key role in the regulation of cell shape and the behavior of cells. However, most existing approaches for the measurement of cell vibration require either exogenous modification or sophisticated techniques, and the main challenge lies in developing methods that can monitor membrane vibration of living cells directly. Herein, a noninvasive strategy based on ultrasmall quartz nanopipettes is introduced. With a tip size of less than 100 nm, nanopipettes can be spatially controlled for precision targeting of a specific location on the membrane of single living cells. Surprisingly, by employing a constant voltage, stable cyclic oscillations are observed from the continuous current versus time traces. The time-domain current can be decomposed into two basic waves: the high-frequency one indicates the local membrane vibration driven by the electro-osmotic flow from the nanopipette, whereas the low-frequency one indicates the natural frequency of the whole cell. This provides a simple but reliable method to test local and global membrane vibration of single living cells simultaneously with little damage, which provides a tool for the quantification of drugs, disease, or mutations of the cell structure.  相似文献   

11.
In biological experimentation and especially in drug discovery there is a trend towards more complex test systems. Cell-based assays are replacing conventional binding or enzyme assays more and more. This development is strongly driven by novel fluorescent probes that give insight into cellular processes. Target proteins are studied in their natural environment; this gives much more realistic test results, especially with respect to enzyme location and kinetics. However, in the complex environment of cells, many parameters contribute to the performance of the protein of interest. Therefore, it would be desirable to monitor simultaneously as many of the relevant cellular processes as possible. Here, we discuss the possibilities and limitations provided by multiparameter monitoring of cellular events with fluorescent probes. Some novel examples of the use of fluorescent probes and multiparameter imaging are shown.  相似文献   

12.
13.
14.
15.
Phospholipid nanodiscs are a native‐like membrane mimetic that is suitable for structural studies of membrane proteins. Although nanodiscs of different sizes exist for various structural applications, their thermal and long‐term stability can vary considerably. Covalently circularized nanodiscs are a perfect tool to overcome these limitations. Existing methods for the production of circularized nanodiscs can be time‐consuming and technically demanding. Therefore, an easy in vivo approach, in which circularized membrane scaffold proteins (MSPs) can be directly obtained from Escherichia coli culture, is reported herein. Nostoc punctiforme DnaE split‐intein fusions with MSPs of various lengths are used and consistently provide circularized nanodiscs in high yields. With this approach, a large variety of circularized nanodiscs, ranging from 7 to 26 nm in diameter, that are suitable for NMR spectroscopy and electron microscopy (EM) applications can be prepared. These nanodiscs are superior to those of the corresponding linear versions in terms of stability and size homogeneity, which affects the quality of NMR spectroscopy data and EM experiments. Due to their long‐term stability and homogeneity, the presented small circular nanodiscs are suited for high‐resolution NMR spectroscopy studies, as demonstrated with two membrane proteins of 17 or 32 kDa in size. The presented method will provide easy access to circularized nanodiscs for structural studies of membrane proteins and for applications in which a defined and stable nanodisc size is required.  相似文献   

16.
Biochemical studies of integral membrane proteins are often hampered by low purification yields and technical limitations such as aggregation causing in vitro manipulations to be challenging. The ability of controlling proteins in live cells bypasses these limitations while broadening the scope of accessible questions owing to the proteins being in their native environment. Here we take advantage of the intein biorthogonality to mammalian systems, site specificity, fast kinetics, and auto-processing nature as an attractive option for modifying surface proteins. Using EGFR as a model, we demonstrate that the split-intein pair AvaN/NpuC can be used to efficiently and specifically modify target membrane proteins with a synthetic adduct for downstream live cell application.  相似文献   

17.
In order to monitor membrane–protein binding in lipid bilayers at physiological protein concentrations, we employed the recently developed dual‐focus fluorescence correlation spectroscopy (2fFCS) technique. In a case study on a photoreceptor consisting of seven transmembrane helices and its cognate transducer (two transmembrane helices), the lateral diffusion for these integral membrane proteins was analyzed in giant unilamellar vesicles (GUVs). The two‐dimensional diffusion coefficients of both separately diffusing proteins differ significantly, with D=2.2×10?8 cm2 s?1 for the photoreceptor and with D=4.1×10?8 cm2 s?1 for the transducer. In GUVs with both membrane proteins present together, we observed significantly smaller diffusion coefficients for labelled transducer molecules; this indicates the presence of larger diffusing units and therefore intermolecular protein binding. Based on the phenomenological dependence of diffusion coefficients on the molecule's cylindrical radius, we are able to estimate the degree of membrane protein binding on a quantitative level.  相似文献   

18.
The creation of novel bioanalytical tools for the detection and monitoring of a range of important target substances and biological events in vivo and in vitro is a great challenge in chemical biology and biotechnology. Protein‐based fluorescent biosensors—integrated devices that convert a molecular‐recognition event to a fluorescent signal—have recently emerged as a powerful tool. As the recognition units various proteins that can specifically recognize and bind a variety of molecules of biological significance with high affinity are employed. For the transducer, fluorescent proteins, such as green fluorescent protein (GFP) or synthetic fluorophores, are mostly adopted. Recent progress in protein engineering and organic synthesis allows us to manipulate proteins genetically and/or chemically, and a library of such protein scaffolds has been significantly expanded by genome projects. In this review, we briefly describe the recent progress of protein‐based fluorescent biosensors on the basis of their platform and construction strategy, which are primarily divided into the genetically encoded fluorescent biosensors and chemically constructed biosensors.  相似文献   

19.
Membrane anchorage was tested as a strategy to accumulate recombinant proteins in transgenic plants. Transmembrane domains of different lengths and topology were fused to the cytosolic HIV antigen p24, to promote endoplasmic reticulum (ER) residence or traffic to distal compartments of the secretory pathway in transgenic tobacco. Fusions to a domain of the maize seed storage protein γ-zein were also expressed, as a reference strategy that leads to very high stability via the formation of large polymers in the ER lumen. Although all the membrane anchored constructs were less stable compared to the zein fusions, residence at the ER membrane either as a type I fusion (where the p24 sequence is luminal) or a tail-anchored fusion (where the p24 sequence is cytosolic) resulted in much higher stability than delivery to the plasma membrane or intermediate traffic compartments. Delivery to the tonoplast was never observed. The inclusion of a thrombin cleavage site allowed for the quantitative in vitro recovery of p24 from all constructs. These results point to the ER as suitable compartment for the accumulation of membrane-anchored recombinant proteins in plants.  相似文献   

20.
Nanofibers (NFs) are potential candidates as filter materials for affinity separation owing to their high liquid permeability based on their high porosity. Multiple and complex processes were conventionally performed to immobilize proteins for modifying NF surfaces. A simple method must be developed to immobilize proteins without impairing their biological activity. Herein, we succeeded in fabricating NFs with a core of cellulose acetate and a shell of hydrophilic polyvinyl alcohol immobilized with staphylococcal recombinant protein A by a one-step process based on core-shell electrospinning. A total of 12.9 mg/cm3 of antibody was captured in the fiber shell through high affinity with protein A immobilized in an aqueous environment of the hydrogel. The maximum adsorption site and dissociation constant evaluated by the Langmuir model were 87.8 µg and 1.37 µmol/L, respectively. The fiber sheet withstood triplicate use. Thus, our NF exhibited high potential as a material for membrane chromatography.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号