首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Traditionally, prodrug activation has been limited to enzymatic triggers or gross physiological aberrations, such as pH, that offer low selectivity and control over dosage. In recent years, the field of prodrug activation chemistry has been transformed by the use of bioorthogonal reactions that can be carried out under biological conditions at sub-millimolar concentrations, with the tetrazine-mediated inverse electron demand Diels–Alder reaction amongst the most recognised. Their high reaction rates, chemoselectivity and excellent biocompatibility make tetrazines ideal small molecules for activating prodrugs. Recently the tetrazine moiety has been used as a prodrug for a pyridazine thus broadening the scope of prodrug systems. This article discusses the concept of using tetrazines as small-molecule activators for prodrugs, and provides an overview of tetrazine-based prodrug systems, with a particular focus on the recently reported prodrug–prodrug activation strategy.  相似文献   

2.
Pentamidine is an effective antimicrobial agent that is approved for the treatment of African trypanosomiasis but suffers from poor oral bioavailability and central nervous system (CNS) penetration. This work deals with the development and systematic characterisation of new prodrugs of pentamidine. For this reason, numerous prodrugs that use different prodrug principles were synthesised and examined in vitro and in vivo. Another objective of the study was the determination of permeability of the different pentamidine prodrugs. While some of the prodrug principles applied in this study are known, such as the conversion of the amidine functions into amidoximes or the O-alkylation of amidoximes with a carboxymethyl residue, others were developed more recently and are described here for the first time. These newly developed methods aim to increase the affinity of the prodrug for the transporters and mediate an active uptake via carrier systems by conjugation of amidoximes with compounds that improve the overall solubility of the prodrug. The different principles chosen resulted in several pentamidine prodrugs with various advantages. The objective of this investigation was the systematic characterisation and evaluation of eight pentamidine prodrugs in order to identify the most appropriate strategy to improve the properties of the parent drug. For this reason, all prodrugs were examined with respect to their solubility, stability, enzymatic activation, distribution, CNS delivery, and oral bioavailability. The results of this work have allowed reliable conclusions to be drawn regarding the best prodrug principle for the antiprotozoal drug pentamidine.  相似文献   

3.
Therapeutics with activity specifically at the inflamed sites throughout the gastrointestinal tract (GIT) would be a major advance in our therapeutic approach to inflammatory bowel disease (IBD). We aimed to develop the prodrug approach that can allow such site-specific drug delivery. Currently, using cyclosporine as a drug of choice in IBD is limited to the most severe cases due to substantial systemic toxicities and narrow therapeutic index of this drug. Previously, we synthesized a series of a phospholipid-linker-cyclosporine (PLC) prodrugs designed to exploit the overexpression of phospholipase A2 (PLA2) in the inflamed intestinal tissues, as the prodrug-activating enzyme. Nevertheless, the extent and rate of prodrug activation differed significantly. In this study we applied in-vitro and modern in-silico tools based on molecular dynamics (MD) simulation, to gain insight into the dynamics and mechanisms of the PLC prodrug activation. We aimed to elucidate the reason for the significant activation change between different linker lengths in our prodrug design. Our work reveals that the PLC conjugate with the 12-carbon linker length yields the optimal prodrug activation by PLA2 in comparison to shorter linker length (6-carbons). This optimized length efficiently allows cyclosporine to be released from the prodrug to the active pocket of PLA2. This newly developed mechanistic approach, presented in this study, can be applied for future prodrug optimization to accomplish optimal prodrug activation and drug targeting in various conditions that include overexpression of PLA2.  相似文献   

4.
The development of potent antitumor agents with a low toxicological profile against healthy cells is still one of the greatest challenges facing medicinal chemistry. In this context, the “mutual prodrug” approach has emerged as a potential tool to overcome undesirable physicochemical features and mitigate the side effects of approved drugs. Among broad-spectrum chemotherapeutics available for clinical use today, 5-fluorouracil (5-FU) is one of the most representative, also included in the World Health Organization model list of essential medicines. Unfortunately, severe side effects and drug resistance phenomena are still the primary limits and drawbacks in its clinical use. This review describes the progress made over the last ten years in developing 5-FU-based mutual prodrugs to improve the therapeutic profile and achieve targeted delivery to cancer tissues.  相似文献   

5.
Imatinib is the first protein kinase inhibitor approved for clinical use and is a seminal drug for the concept of targeted therapy. Herein we report on the design, synthesis, photokinetic properties, and in vitro enzymatic evaluation of a photoactivatable caged prodrug of imatinib. This approach allows spatial and temporal control over the activation of imatinib triggered by ultraviolet light. The successful application of the photoactivation concept to this significant kinase inhibitor provides further evidence for the caging technique as a feasible approach in the kinase field. The presented photoactivatable imatinib prodrug will be highly useful as a pharmacological tool to study the impact of imatinib toward biological systems in greater detail.  相似文献   

6.
The molecular imaging of apoptosis remains an important method for the diagnosis and monitoring of the progression of certain diseases and the evaluation of the efficacy of anticancer apoptosis-inducing therapies. Among the multiple biomarkers involved in apoptosis, activated caspase-3 is an attractive target, as it is the most abundant of the executioner caspases. Nuclear imaging is a good candidate, as it combines a high depth of tissue penetration and high sensitivity, features necessary to detect small changes in levels of apoptosis. However, designing a caspase-3 radiotracer comes with challenges, such as selectivity, cell permeability and transient caspase-3 activation. In this review, we discuss the different caspase-3 radiotracers for the imaging of apoptosis together with the challenges of the translation of various apoptosis-imaging strategies in clinical trials.  相似文献   

7.
Novel phospholipid (PL)-cyclosporine conjugates were prepared and studied as potential prodrugs for inflammatory bowel disease (IBD). Our approach relies on phospholipase A2 (PLA2), which is overexpressed in the inflamed intestinal tissues, as the prodrug activator to potentially release cyclosporine at the site of inflammation. PL-cyclosporine prodrug conjugates with methylene linkers of various lengths between the sn-2 position of the PL and cyclosporine were synthesized and evaluated for in vitro activation. Surprisingly, despite previous work indicating that conjugates with six methylene linkers between the lipid and drug would suffer rapid enzymatic hydrolysis, with cyclosporine this was not observed. However, compounds with longer linkers (n=10, 12 methylene units) display complete release of the drug by PLA2-catalyzed hydrolysis, thus demonstrating the importance and profound impact of structural fine-tuning. This study represents a proof-of-concept for our hypothesis and a first step towards a truly targeted IBD treatment with cyclosporine that could be administered throughout the GI tract.  相似文献   

8.
Long-term nonsteroidal anti-inflammatory drugs (NSAIDs) therapy has been associated with several adverse effects such as gastric ulceration and cardiovascular events. Among the molecular modifications strategies, the prodrug approach is a useful tool to discover new safe NSAIDs. The 1-(2,6-dichlorophenyl)indolin-2-one is a diclofenac prodrug which demonstrated relevant anti-inflammatory properties without gastro ulceration effect. In addition, the prodrug decreases PGE2 levels, COX-2 expression and cellular influx into peritoneal cavity induced by carrageenan treatment. Preliminary pharmacokinetic studies have shown in vivo bioconversion of prodrug to diclofenac. This prodrug is a new nonulcerogenic NSAID useful to treat inflammatory events by long-term therapy.  相似文献   

9.
The low depth of tissue penetration by therapeutic light sources severely restricts photodynamic therapy (PDT) in treating deep-seated tumors. Using a luciferase/d -luciferin bioluminescence system to artificially create internal light sources in cells instead of external light sources is an effective means of solving the above problems. However, high-efficiency bioluminescence requires a higher concentration of luciferase in the cell, which poses a considerable challenge to the existing system of enzyme loading, delivery, activity and retention of drugs, and dramatically increases the cost of treatment. We loaded the substrate D-luciferin, and the photosensitizer hypericin into a polyethyleneimine (PEI)-modified nano-calcium phosphate (CaP) to solve this problem. Subsequently, the plasmid DNA containing the luciferase gene was loaded onto it using the high-density positive charge characteristic of PEI from the nanodrug (denoted DHDC). After the DHDC enters the tumor cell, it collapses and releases the plasmid DNA, which uses the intracellular protein synthesis system to continuously and massively express luciferase. Using endogenous ATP, Mg2+, and O2 in cells, luciferase oxidizes d -luciferin and produces luminescence. The luminescence triggers hypericin excitation to generate ROS and kill cancer cells. This study provides a new strategy for the application of bioluminescence in PDT treatment.  相似文献   

10.
Trimethyl lock (TML) systems are based on ortho‐hydroxydihydrocinnamic acid derivatives displaying increased lactonization reactivity owing to unfavorable steric interactions of three pendant methyl groups, and this leads to the formation of hydrocoumarins. Protection of the phenolic hydroxy function or masking of the reactivity as benzoquinone derivatives prevents lactonization and provides a trigger for controlled release of molecules attached to the carboxylic acid function through amides, esters, or thioesters. Their easy synthesis and possible chemical adaption to several different triggers make TML a highly versatile module for the development of drug‐delivery systems, prodrug approaches, cell‐imaging tools, molecular tools for supramolecular chemistry, as well as smart stimuliresponsive materials.  相似文献   

11.
The penetration depth of shaped charge jet into target is strongly affected by the stand‐off. The penetration process terminates even when the jet velocity is still high, and the penetration capability of jet particles degrades after jet breakup at a large stand‐off. This work presents an analytical model to describe the radial drift velocity and distance between jet particles, which leads to decreased penetration depth. The results show that jet particles with low drift velocity impact the crater wall easily. Furthermore, the jet particles cannot reach the crater bottom to increase depth because the crater diameter generated by the jet is quite small. Moreover, the distances between jet particles also play an important role in penetration depth under the influences of strain hardening of target, as well as tumbling and dispersion of jet particles. The radial drift velocity and distance between jet particles are investigated by applying the model to non‐precision charge and precision charge penetrations into target at different stand‐offs. The cutoff jet velocity and cutoff penetration velocity also are determined based on the analytical model. With increased stand‐off, the cutoff jet velocity increases, and the cutoff penetration velocity is almost constant. This result is proven by a number of experiments. The stand‐off curves of two charges are also calculated, and results are in good agreement with experiments. The stand‐off curve can be determined with only two or three experiments using the proposed method. Notably, jet particles should have a slow drift velocity and great penetration capability after breakup for suitable shaped charge.  相似文献   

12.
The design and scale-up preparation of adsorbent is the key to commercialize the adsorptive storage technology of natural gas (ANG). The super activated carbon might be potential to ANG because of its special porosity. The traditional approach to prepare the super activated carbon is the chemical activation using alkali hydroxides as activation agent. Of difficult is how to control of micropore diameter and volume while maintain the super high surface area. Coupling approach to prepare super activated carbon from coke or coal was firstly achieved and the mechanism was tentatively postulated. It is found that activated carbon prepared by coupling approach bears developed micropore structure, which is produced by depth activation catalyzed by chemical agent at moderate temperature and might be feasible for adsorption storage of natural gas, and considerable mesopore structure, which is formed by width activation catalyzed by chemical agent and/or steam at elevated temperature and feasible for desorption process of ANG. The activation mechanism of coupling approach is actually two-step activation, depth activation at moderate temperature and width activation at elevated temperature. It means that the coupling of chemical activation with physical activation is a potential approach to prepare the adsorption materials for natural gas storage.  相似文献   

13.
The design and scale-up preparation of adsorbent is the key to commercialize the adsorptive storage technology of natural gas (ANG). The super activated carbon might be potential to ANG because of its special porosity. The traditional approach to prepare the super activated carbon is the chemical activation using alkali hydroxides as activation agent. Of difficult is how to control of micropore diameter and volume while maintain the super high surface area. Coupling approach to prepare super activated carbon from coke or coal was firstly achieved and the mechanism was tentatively postulated. It is found that activated carbon prepared by coupling approach bears developed micropore structure, which is produced by depth activation catalyzed by chemical agent at moderate temperature and might be feasible for adsorption storage of natural gas, and considerable mesopore structure, which is formed by width activation catalyzed by chemical agent and/or steam at elevated temperature and feasible for desorption process of ANG. The activation mechanism of coupling approach is actually two-step activation, depth activation at moderate temperature and width activation at elevated temperature. It means that the coupling of chemical activation with physical activation is a potential approach to prepare the adsorption materials for natural gas storage.  相似文献   

14.
HE Townley  J Kim  PJ Dobson 《Nanoscale》2012,4(16):5043-5050
Radiation therapy is often limited by damage to healthy tissue and associated side-effects; restricting radiation to ineffective doses. Preferential incorporation of materials into tumour tissue can enhance the effect of radiation. Titania has precedent for use in photodynamic therapy (PDT), generating reactive oxygen species (ROS) upon photoexcitation, but is limited by the penetration depth of UV light. Optimization of a nanomaterial for interaction with X-rays could be used for deep tumour treatment. As such, titania nanoparticles were doped with gadolinium to optimize the localized energy absorption from a conventional medical X-ray, and further optimized by the addition of other rare earth (RE) elements. These elements were selected due to their large X-ray photon interaction cross-section, and potential for integration into the titania crystal structure. Specific activation of the nanoparticles by X-ray can result in generation of ROS leading to cell death in a tumour-localized manner. We show here that intratumoural injection of RE doped titania nanoparticles can enhance the efficacy of radiotherapy in vivo.  相似文献   

15.
Alkylating agents are a major class of anticancer drugs for the treatment of various cancers including hematological malignancies. Targeting alkylating moieties to DNA by attachment of a DNA minor groove binding carrier such as distamycin, netropsin, or Hoechst 33252 reduces the loss of active drug due to reaction with other cell components and makes it possible to direct the alkylation both sequence specifically and regiospecifically. We reported the synthesis and structure-activity studies of amidine analogues of alkylating antineoplastic compounds, which appeared to be a new class of cytotoxic minor groove binders and topoisomerase II inhibitors. Another approach to overcome the toxicity of alkylating agents to normal tissue is to construct a prodrug with lower hydrophobicity and cytotoxicity but is preferentially activated in cancer cells. Overexpression of prolidase in some neoplastic cells suggests that the proline analogue of alkylating agents may serve as a prolidase convertible prodrugs. We have compared several aspects of pharmacological actions of proline analogues of chlorambucil and melphalan in breast cancer cells. The results suggest that prolidase could serve as a target enzyme for the selective action of anticancer agents.  相似文献   

16.
Prodrugs are effective tools in overcoming drawbacks typically associated with drug formulation and delivery. Those employing esterase‐triggered functional groups are frequently utilized to mask polar carboxylic acids and phenols, increasing drug‐like properties such as lipophilicity. Herein we detail a comprehensive assessment for strategies that effectively release hydroxy and phenolic moieties in the presence of an esterase. Matrix metalloproteinases (MMPs) serve as our proof‐of‐concept target. Three distinct ester‐responsive protecting groups are incorporated into MMP proinhibitors containing hydroxy moieties. Analytical evaluation of the proinhibitors demonstrates that the use of a benzyl ether group appended to the esterase trigger leads to considerably faster kinetics of conversion and enhanced aqueous stability when compared with more conventional approaches where the trigger is directly attached to the inhibitor. Biological assays confirm that all protecting groups effectively cleave in the presence of esterase to generate the active inhibitor. The superior reaction‐based prodrug strategies presented here should serve as a platform for esterase‐responsive prodrug design in the future.  相似文献   

17.
The ability to monitor drug release in vivo provides essential pharmacological information. We developed a new modular approach for the preparation of theranostic prodrugs with a turn‐ON near‐infrared (NIR) fluorescence mode of action. The prodrugs release their chemotherapeutic cargo and an active cyanine fluorophore upon reaction with a specific analyte. The prodrug platform is based on the fluorogenic dye QCy7; upon removal of a triggering substrate, the dye fluoresces, and the free drug is released. The evaluated camptothecin prodrug was activated by endogenous hydrogen peroxide produced in tumor cells in vitro and in vivo. Drug release and in vitro cytotoxicity were correlated with the emitted fluorescence. The prodrug activation was effectively imaged in real time in mice bearing tumors. The modular design of the QCy7 fluorogenic platform should allow the preparation of numerous other prodrugs with various triggering substrates and chemotherapeutic agents. We anticipate that the development of real‐time in vivo monitoring tools such as that described herein will pave the way for personalized therapy.  相似文献   

18.
Glioblastoma (GBM) is the most common tumor in the central nervous system in adults. This neoplasia shows a high capacity of growth and spreading to the surrounding brain tissue, hindering its complete surgical resection. Therefore, the finding of new antitumor therapies for GBM treatment is a priority. We have previously described that cyclin D1-CDK4 promotes GBM dissemination through the activation of the small GTPases RalA and RalB. In this paper, we show that RalB GTPase is upregulated in primary GBM cells. We found that the downregulation of Ral GTPases, mainly RalB, prevents the proliferation of primary GBM cells and triggers a senescence-like response. Moreover, downregulation of RalA and RalB reduces the viability of GBM cells growing as tumorspheres, suggesting a possible role of these GTPases in the survival of GBM stem cells. By using mouse subcutaneous xenografts, we have corroborated the role of RalB in GBM growth in vivo. Finally, we have observed that the knockdown of RalB also inhibits cell growth in temozolomide-resistant GBM cells. Overall, our work shows that GBM cells are especially sensitive to Ral-GTPase availability. Therefore, we propose that the inactivation of Ral-GTPases may be a reliable therapeutic approach to prevent GBM progression and recurrence.  相似文献   

19.
Microorganisms, usually bacteria and fungi, grow and spread in skin wounds, causing infections. These infections trigger the immune system and cause inflammation and tissue damage within the skin or wound, slowing down the healing process. The use of photodynamic therapy (PDT) to eradicate microorganisms has been regarded as a promising alternative to anti-infective therapies, such as those based on antibiotics, and more recently, is being considered for skin wound-healing, namely for infected wounds. Among the several molecules exploited as photosensitizers (PS), porphyrinoids exhibit suitable features for achieving those goals efficiently. The capability that these macrocycles display to generate reactive oxygen species (ROS) gives a significant contribution to the regenerative process. ROS are responsible for avoiding the development of infections by inactivating microorganisms such as bacteria but also by promoting cell proliferation through the activation of stem cells which regulates inflammatory factors and collagen remodeling. The PS can act solo or combined with several materials, such as polymers, hydrogels, nanotubes, or metal-organic frameworks (MOF), keeping both the microbial photoinactivation and healing/regenerative processes’ effectiveness. This review highlights the developments on the combination of PDT approach and skin wound healing using natural and synthetic porphyrinoids, such as porphyrins, chlorins and phthalocyanines, as PS, as well as the prodrug 5-aminolevulinic acid (5-ALA), the natural precursor of protoporphyrin-IX (PP-IX).  相似文献   

20.
Sonodynamic therapy (SDT) for cancer treatment is gaining attention owing to its non-invasive property and ultrasound‘s (US) deep tissue penetration ability. In SDT, US activates the sonosensitizer at the target deep-seated tumors to generate reactive oxygen species (ROS), which ultimately damage tumors. However, drawbacks such as insufficient ROS production, aggregation of sonosensitizer, off-target side effects, etc., of the current organic/nanomaterial-based sonosensitizers limit the effectiveness of cancer SDT. Very recently, metal complexes with tunable physiochemical properties (such as sonostability, HOMO to LUMO energy gap, ROS generation ability, aqueous solubility, emission, etc.) have been devised as effective sonosensitizers, which could overcome the limitations of organic/nanomaterial-based sonosensitizers. This concept introduces all the reported metal-based sonosensitizers and delineates the prospects of metal complexes in cancer sonodynamic therapy. This new concept of metal-based sonosensitizer can deliver next-generation cancer drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号