共查询到20条相似文献,搜索用时 15 毫秒
1.
UVB radiation is the most mutagenic component of the UV spectrum that reaches the earth’s surface and causes the development of DNA damage in the form of cyclobutane pyrimidine dimers and 6-4 photoproducts. UV radiation usually results in cellular death, but if left unchecked, it can affect DNA integrity, cell and tissue homeostasis and cause mutations in oncogenes and tumour-suppressor genes. These mutations, if unrepaired, can lead to abnormal cell growth, increasing the risk of cancer development. Epidemiological data strongly associates UV exposure as a major factor in melanoma development, but the exact biological mechanisms involved in this process are yet to be fully elucidated. The nucleotide excision repair (NER) pathway is responsible for the repair of UV-induced lesions. Patients with the genetic disorder Xeroderma Pigmentosum have a mutation in one of eight NER genes associated with the XP complementation groups XP-A to XP-G and XP variant (XP-V). XP is characterized by diminished repair capacity, as well as a 1000-fold increase in the incidence of skin cancers, including melanoma. This has suggested a significant role for NER in melanoma development as a result of UVB exposure. This review discusses the current research surrounding UVB radiation and NER capacity and how further investigation of NER could elucidate the role of NER in avoiding UV-induced cellular death resulting in melanomagenesis. 相似文献
2.
Janusz Blasiak Sylwester Glowacki Anu Kauppinen Kai Kaarniranta 《International journal of molecular sciences》2013,14(2):2996-3010
Aging and oxidative stress seem to be the most important factors in the pathogenesis of age-related macular degeneration (AMD), a condition affecting many elderly people in the developed world. However, aging is associated with the accumulation of oxidative damage in many biomolecules, including DNA. Furthermore, mitochondria may be especially important in this process because the reactive oxygen species produced in their electron transport chain can damage cellular components. Therefore, the cellular response to DNA damage, expressed mainly through DNA repair, may play an important role in AMD etiology. In several studies the increase in mitochondrial DNA (mtDNA) damage and mutations, and the decrease in the efficacy of DNA repair have been correlated with the occurrence and the stage of AMD. It has also been shown that mitochondrial DNA accumulates more DNA lesions than nuclear DNA in AMD. However, the DNA damage response in mitochondria is executed by nucleus-encoded proteins, and thus mutagenesis in nuclear DNA (nDNA) may affect the ability to respond to mutagenesis in its mitochondrial counterpart. We reported that lymphocytes from AMD patients displayed a higher amount of total endogenous basal and oxidative DNA damage, exhibited a higher sensitivity to hydrogen peroxide and UV radiation, and repaired the lesions induced by these factors less effectively than did cells from control individuals. We postulate that poor efficacy of DNA repair (i.e., is impaired above average for a particular age) when combined with the enhanced sensitivity of retinal pigment epithelium cells to environmental stress factors, contributes to the pathogenesis of AMD. Collectively, these data suggest that the cellular response to both mitochondrial and nuclear DNA damage may play an important role in AMD pathogenesis. 相似文献
3.
Cai‐Guang Yang Prof. Kristel Garcia Chuan He Prof. 《Chembiochem : a European journal of chemical biology》2009,10(3):417-423
The foreign lesion : The mechanistic questions for DNA base damage detection by repair proteins are discussed in this Minireview. Repair proteins could either probe and locate a weakened base pair that results from base damage, or passively capture an extrahelical base lesion in the first step of damage searching on double‐stranded DNA. How some repair proteins, such as AGT (see figure), locate base lesions in DNA is still not fully understood.
4.
Dr. Hui Qiu Richard Caldwell Dr. Lesley Liu-Bujalski Dr. Andreas Goutopoulos Reinaldo Jones Justin Potnick Dr. Brian Sherer Dr. Andrew Bender Dr. Roland Grenningloh Dr. Daigen Xu Dr. Anna Gardberg Dr. Igor Mochalkin Dr. Theresa Johnson Dr. Ariele Viacava Follis Jared Head Dr. Federica Morandi 《ChemMedChem》2019,14(2):217-223
Bruton's tyrosine kinase (Btk) is an attractive target for the treatment of a wide array of B-cell malignancies and autoimmune diseases. Small-molecule covalent irreversible Btk inhibitors targeting Cys481 have been developed for the treatment of such diseases. In clinical trials, probe molecules are required in occupancy studies to measure the level of engagement of the protein by these covalent irreversible inhibitors. The result of this pharmacodynamic (PD) activity provides guidance for appropriate dosage selection to optimize inhibition of the drug target and correlation of target inhibition with disease treatment efficacy. This information is crucial for successful evaluation of drug candidates in clinical trials. Based on the pyridine carboxamide scaffold of a novel solvent-accessible pocket (SAP) series of covalent irreversible Btk inhibitors, we successfully developed a potent and selective affinity-based biotinylated probe 12 (2-[(4-{4-[5-(1-{5-[(3aS,4S,6aR)-2-oxo-hexahydro-1H-thieno[3,4-d]imidazol-4-yl]pentanamido}-3,6,9,12-tetraoxapentadecan-15-amido)pentanoyl]piperazine-1-carbonyl}phenyl)amino]-6-[1-(prop-2-enoyl)piperidin-4-yl]pyridine-3-carboxamide). Compound 12 has been used in Btk occupancy assays for preclinical studies to determine the therapeutic efficacy of Btk inhibition in two mouse lupus models driven by TLR7 activation and type I interferon. 相似文献
5.
6.
Jana Yasser Hafez Ali Amira Mohammed Fitieh Ismail Hassan Ismail 《International journal of molecular sciences》2022,23(10)
Multiple Myeloma (MM) is a B cell malignancy marked by genomic instability that arises both through pathogenesis and during disease progression. Despite recent advances in therapy, MM remains incurable. Recently, it has been reported that DNA repair can influence genomic changes and drug resistance in MM. The dysregulation of DNA repair function may provide an alternative explanation for genomic instability observed in MM cells and in cells derived from MM patients. This review provides an overview of DNA repair pathways with a special focus on their involvement in MM and discusses the role they play in MM progression and drug resistance. This review highlights how unrepaired DNA damage due to aberrant DNA repair response in MM exacerbates genomic instability and chromosomal abnormalities, enabling MM progression and drug resistance. 相似文献
7.
Liangyu Hu Zhengkun Wang Claudia Carmone Jaap Keijer Deli Zhang 《International journal of molecular sciences》2021,22(8)
Atrial fibrillation (AF) and ischemic heart disease (IHD) represent the two most common clinical cardiac diseases, characterized by angina, arrhythmia, myocardial damage, and cardiac dysfunction, significantly contributing to cardiovascular morbidity and mortality and posing a heavy socio-economic burden on society worldwide. Current treatments of these two diseases are mainly symptomatic and lack efficacy. There is thus an urgent need to develop novel therapies based on the underlying pathophysiological mechanisms. Emerging evidence indicates that oxidative DNA damage might be a major underlying mechanism that promotes a variety of cardiac diseases, including AF and IHD. Antioxidants, nicotinamide adenine dinucleotide (NAD+) boosters, and enzymes involved in oxidative DNA repair processes have been shown to attenuate oxidative damage to DNA, making them potential therapeutic targets for AF and IHD. In this review, we first summarize the main molecular mechanisms responsible for oxidative DNA damage and repair both in nuclei and mitochondria, then describe the effects of oxidative DNA damage on the development of AF and IHD, and finally discuss potential targets for oxidative DNA repair-based therapeutic approaches for these two cardiac diseases. 相似文献
8.
Olga A. Kladova Olga S. Fedorova Nikita A. Kuznetsov 《International journal of molecular sciences》2022,23(4)
DNA polymerase β (Polβ) is considered the main repair DNA polymerase involved in the base excision repair (BER) pathway, which plays an important part in the repair of damaged DNA bases usually resulting from alkylation or oxidation. In general, BER involves consecutive actions of DNA glycosylases, AP endonucleases, DNA polymerases, and DNA ligases. It is known that protein–protein interactions of Polβ with enzymes from the BER pathway increase the efficiency of damaged base repair in DNA. However natural single-nucleotide polymorphisms can lead to a substitution of functionally significant amino acid residues and therefore affect the catalytic activity of the enzyme and the accuracy of Polβ action. Up-to-date databases contain information about more than 8000 SNPs in the gene of Polβ. This review summarizes data on the in silico prediction of the effects of Polβ SNPs on DNA repair efficacy; available data on cancers associated with SNPs of Polβ; and experimentally tested variants of Polβ. Analysis of the literature indicates that amino acid substitutions could be important for the maintenance of the native structure of Polβ and contacts with DNA; others affect the catalytic activity of the enzyme or play a part in the precise and correct attachment of the required nucleotide triphosphate. Moreover, the amino acid substitutions in Polβ can disturb interactions with enzymes involved in BER, while the enzymatic activity of the polymorphic variant may not differ significantly from that of the wild-type enzyme. Therefore, investigation regarding the effect of Polβ natural variants occurring in the human population on enzymatic activity and protein–protein interactions is an urgent scientific task. 相似文献
9.
Marina Martinez-Garcia Charles I. White F. Chris. H. Franklin Eugenio Sanchez-Moran 《International journal of molecular sciences》2021,22(23)
DNA entanglements and supercoiling arise frequently during normal DNA metabolism. DNA topoisomerases are highly conserved enzymes that resolve the topological problems that these structures create. Topoisomerase II (TOPII) releases topological stress in DNA by removing DNA supercoils through breaking the two DNA strands, passing a DNA duplex through the break and religating the broken strands. TOPII performs key DNA metabolic roles essential for DNA replication, chromosome condensation, heterochromatin metabolism, telomere disentanglement, centromere decatenation, transmission of crossover (CO) interference, interlock resolution and chromosome segregation in several model organisms. In this study, we reveal the endogenous role of Arabidopsis thaliana TOPII in normal root growth and cell cycle, and mitotic DNA repair via homologous recombination. Additionally, we show that the protein is required for meiotic DSB repair progression, but not for CO formation. We propose that TOPII might promote mitotic HR DNA repair by relieving stress needed for HR strand invasion and D-loop formation. 相似文献
10.
11.
Jovana Bojcevski Changwen Wang Haikun Liu Amir Abdollahi Ivana Dokic 《International journal of molecular sciences》2021,22(24)
DNA-double strand break (DSB), detected by immunostaining of key proteins orchestrating repair, like γH2AX and 53BP1, is well established as a surrogate for tissue radiosensitivity. We hypothesized that the generation of normal brain 3D organoids (“mini-brains”) from human induced pluripotent stem cells (hiPSC) combined with detection of DNA damage repair (DDR) may hold the promise towards developing personalized models for the determination of normal tissue radiosensitivity. In this study, cerebral organoids, an in vitro model that stands in its complexity between 2D cellular system and an organ, have been used. To quantify radiation-induced response, immunofluorescent staining with γH2AX and 53BP1 were applied at early (30 min, initial damage), and late time points (18 and 72 h, residual damage), following clinical standard 2 Gy irradiation. Based on our findings, assessment of DDR kinetics as a surrogate for radiosensitivity in hiPSC derived cerebral organoids is feasible. Further development of mini-brains recapitulating mature adult neuronal tissue and implementation of additional signaling and toxicity surrogates may pave the way towards development of next-generation personalized assessment of radiosensitivity in healthy neuronal tissue. 相似文献
12.
Mario Cioce Andrea Sacconi Harvey I. Pass Claudia Canino Sabrina Strano Giovanni Blandino Vito Michele Fazio 《International journal of molecular sciences》2021,22(21)
Chemoresistance is a hallmark of malignant pleural mesothelioma (MPM) management and the expression of ALDH1A3 is responsible for the survival and activity of MPM chemoresistant cell subpopulations (ALDHbright cells). We enriched mesothelioma ALDHbright cells to near homogeneity by FACS sorting and an Aldefluor assay and performed unbiased Affymetrix gene expression profiling. Viability and ELISA assays were used to rule out significant apoptosis in the sorted cell subpopulations and to assess target engagement by butein. Statistical analysis of the results, pathway enrichment and promoter enrichment were employed for the generation of the data. Q-RTPCR was used to validate a subset of the identified, modulated mRNAs In this work, we started from the observation that the mRNA levels of the ALDH1A3 isoform could prognostically stratify MPM patients. Thus, we purified MPM ALDHbright cells from NCI-H2595 cells and interrogated their gene expression (GES) profile. We analyzed the GES of the purified cells at both a steady state and upon treatment with butein (a multifunctional tetrahydroxy-chalcone), which abates the ALDHbright cell number, thereby exerting chemo-sensitizing effects in vitro and in vivo. We identified 924 genes modulated in a statistically significant manner as a function of ALDH status and of the response to the inhibitor. Pathway and promoter enrichment identified the molecular determinant of high ALDH status and how butein treatment altered the molecular portrait of those chemoresistant cell subpopulations. Further, we unraveled an eighteen-gene signature with high prognostic significance for MPM patients, and showed that most of the identified prognostic contributors escaped the analysis of unfractionated samples. This work proves that digging into the unexplored field of intra-tumor heterogeneity (ITH) by working at the cell subpopulation level may provide findings of prognostic relevance, in addition to mechanistic insights into tumor resistance to therapy. 相似文献
13.
Mohammad Asif Sherwani Israr Ahmad Monica J. Lewis Ahmed Abdelgawad Harunur Rashid Kevin Yang Ching-Yi Chen Chander Raman Craig A. Elmets Nabiha Yusuf 《International journal of molecular sciences》2022,23(3)
Type I interferons (IFNs) are important enhancers of immune responses which are downregulated in human cancers, including skin cancer. Solar ultraviolet (UV) B radiation is a proven environmental carcinogen, and its exposure contributes to the high prevalence of skin cancer. The carcinogenic effects of UV light can be attributed to the formation of cyclobutane pyrimidine dimers (CPD) and errors in the repair and replication of DNA. Treatment with a single dose of UVB (100 mJ/cm2) upregulated IFNα and IFNβ in the skin of C57BL/6 mice. IFNα and IFNβ were predominantly produced by CD11b+ cells. In mice lacking the type I IFN receptor 1 (IFNAR1), the repair of CPD following cutaneous exposure to a single dose of UVB (100 mJ/cm2) was decreased. UVB induced the expression of the DNA repair gene xeroderma pigmentosum A (XPA) in wild-type (WT) mice. In contrast, such treatment in IFNAR1 (IFNAR1-/-) mice downregulated XPA. A local UVB regimen consisting of UVB radiation (150 mJ/cm2) for 4 days followed by sensitization with hapten 2,4, dinitrofluorobenzene (DNFB) resulted in significant suppression of immune responses in both WT and IFNAR1-/- mice. However, there were significantly higher CD4+CD25+Foxp3+ regulatory T-cells in the draining lymph nodes of IFNAR1-/- mice in comparison to WT mice. Overall, our studies reveal a previously unknown action of type I IFNs in the repair of photodamage and the prevention of UVB-induced immune suppression. 相似文献
14.
15.
Jason A. Lehman Lindsey D. Mayo 《International journal of molecular sciences》2012,13(12):16373-16386
The alteration of tumorigenic pathways leading to cancer is a degenerative disease process typically involving inactivation of tumor suppressor proteins and hyperactivation of oncogenes. One such oncogenic protein product is the murine double-minute 2, or Mdm2. While, Mdm2 has been primarily associated as the negative regulator of the p53 tumor suppressor protein there are many p53-independent roles demonstrated for this oncogene. DNA damage and chemotherapeutic agents are known to activate Mdm2 and DNA repair pathways. There are five primary DNA repair pathways involved in the maintenance of genomic integrity: Nucleotide excision repair (NER), Base excision repair (BER), Mismatch repair (MMR), Non-homologous end joining (NHEJ) and homologous recombination (HR). In this review, we will briefly describe these pathways and also delineate the functional interaction of Mdm2 with multiple DNA repair proteins. We will illustrate the importance of these interactions with Mdm2 and discuss how this is important for tumor progression, cellular proliferation in cancer. 相似文献
16.
Harini S. Aiyer Manicka V. Vadhanam Radka Stoyanova Gerard D. Caprio Margie L. Clapper Ramesh C. Gupta 《International journal of molecular sciences》2008,9(3):327-341
DNA damage is a pre-requisite for the initiation of cancer and agents that reduce this damage are useful in cancer prevention. In this study, we evaluated the ability of whole berries and berry phytochemical, ellagic acid to reduce endogenous oxidative DNA damage. Ellagic acid was selected based on >95% inhibition of 8-oxodeoxyguosine (8-oxodG) and other unidentified oxidative DNA adducts induced by 4-hydroxy-17ß-estradiol and CuCl2 in vitro. Inhibition of the latter occurred at lower concentrations (10 μM) than that for 8-oxodG (100 μM). In the in vivo study, female CD-1 mice (n=6) were fed either a control diet or diet supplemented with ellagic acid (400 ppm) and dehydrated berries (5% w/w) with varying ellagic acid contents – blueberry (low), strawberry (medium) and red raspberry (high), for 3 weeks. Blueberry and strawberry diets showed moderate reductions in endogenous DNA adducts (25%). However, both red raspberry and ellagic acid diets showed a significant reduction of 59% (p < 0.001) and 48% (p < 0.01), respectively. Both diets also resulted in a 3–8 fold over-expression of genes involved in DNA repair such as xeroderma pigmentosum group A complementing protein (XPA), DNA excision repair protein (ERCC5) and DNA ligase III (DNL3). These results suggest that red raspberry and ellagic acid reduce endogenous oxidative DNA damage by mechanisms which may involve increase in DNA repair. 相似文献
17.
18.
Miriam J. Kavec Marketa Urbanova Pavol Makovicky Alena Opattov Kristyna Tomasova Michal Kroupa Klara Kostovcikova Anna Siskova Nazila Navvabi Michaela Schneiderova Veronika Vymetalkova Ludmila Vodickova Pavel Vodicka 《International journal of molecular sciences》2022,23(10)
Oxidative stress, oxidative DNA damage and resulting mutations play a role in colorectal carcinogenesis. Impaired equilibrium between DNA damage formation, antioxidant status, and DNA repair capacity is responsible for the accumulation of genetic mutations and genomic instability. The lesion-specific DNA glycosylases, e.g., hOGG1 and MUTYH, initiate the repair of oxidative DNA damage. Hereditary syndromes (MUTYH-associated polyposis, NTHL1-associated tumor syndrome) with germline mutations causing a loss-of-function in base excision repair glycosylases, serve as straight forward evidence on the role of oxidative DNA damage and its repair. Altered or inhibited function of above glycosylases result in an accumulation of oxidative DNA damage and contribute to the adenoma-adenocarcinoma transition. Oxidative DNA damage, unless repaired, often gives rise G:C > T:A mutations in tumor suppressor genes and proto-oncogenes with subsequent occurrence of chromosomal copy-neutral loss of heterozygosity. For instance, G>T transversions in position c.34 of a KRAS gene serves as a pre-screening tool for MUTYH-associated polyposis diagnosis. Since sporadic colorectal cancer represents more complex and heterogenous disease, the situation is more complicated. In the present study we focused on the roles of base excision repair glycosylases (hOGG1, MUTYH) in colorectal cancer patients by investigating tumor and adjacent mucosa tissues. Although we found downregulation of both glycosylases and significantly lower expression of hOGG1 in tumor tissues, accompanied with G>T mutations in KRAS gene, oxidative DNA damage and its repair cannot solely explain the onset of sporadic colorectal cancer. In this respect, other factors (especially microenvironment) per se or in combination with oxidative DNA damage warrant further attention. Base excision repair characteristics determined in colorectal cancer tissues and their association with disease prognosis have been discussed as well. 相似文献
19.
20.
Ireneusz Litwin Seweryn Mucha Ewa Pilarczyk Robert Wysocki Ewa Maciaszczyk-Dziubinska 《International journal of molecular sciences》2021,22(9)
Antimony is a toxic metalloid with poorly understood mechanisms of toxicity and uncertain carcinogenic properties. By using a combination of genetic, biochemical and DNA damage assays, we investigated the genotoxic potential of trivalent antimony in the model organism Saccharomyces cerevisiae. We found that low doses of Sb(III) generate various forms of DNA damage including replication and topoisomerase I-dependent DNA lesions as well as oxidative stress and replication-independent DNA breaks accompanied by activation of DNA damage checkpoints and formation of recombination repair centers. At higher concentrations of Sb(III), moderately increased oxidative DNA damage is also observed. Consistently, base excision, DNA damage tolerance and homologous recombination repair pathways contribute to Sb(III) tolerance. In addition, we provided evidence suggesting that Sb(III) causes telomere dysfunction. Finally, we showed that Sb(III) negatively effects repair of double-strand DNA breaks and distorts actin and microtubule cytoskeleton. In sum, our results indicate that Sb(III) exhibits a significant genotoxic activity in budding yeast. 相似文献