首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
We report a rapid microtiter plate screening assay for the optimization of the synthesis of covalent DNA-protein conjugates by means of expressed protein ligation (EPL). The EPL method allows for the site-specific coupling of cysteine-modified DNA oligomers with recombinant intein-fusion proteins, the latter containing a C-terminal thioester that enables a mild and highly specific reaction with N-terminal cysteine compounds. To screen for optimal reaction conditions, we developed a microtiter plate-based assay that utilizes DNA-directed immobilization of the products formed in the ligation reaction of cysteine-modified DNA oligonucleotides with the model protein thioester of the maltose-binding protein (MBP), recombinantly expressed as an intein-fusion protein in E. coli. The screening assay allowed the rapid quantitative monitoring of various reaction parameters, such as the ratio of the reactants, reaction times, pH and ion strength of the buffer, the influence of various thiol additives and the nature of the chemical linker within the cysteine-bearing DNA oligonucleotide. As the consequence of the assay-based optimization, the ligation of MBP with the oligonucleotide was improved to near quantitative yields.  相似文献   

3.
Chemical ligation is an important tool for the generation of synthetic DNA structures, which are used for a wide range of applications. Surprisingly, reported chemical ligation yields can range from 30 to 95 % for the same chemical activating agent and comparable DNA structures. We report a systematic study of DNA ligation by using a well-defined bimolecular test system and a water-soluble carbodiimide (EDC) as a phosphate-activating agent. Our results emphasize the interplay between template-substrate complex stability and the rates of the chemical steps of ligation, with 3′ phosphate substrates providing yields near 100 % after 24 hours for particularly favorable reaction conditions. Ligation rates are also shown to be sensitive to the identity of the base pairs flanking a nick site, with as much as threefold variation. Finally, the observation that DNA substrates are modified by EDC at rates that can be comparable with ligation rates emphasizes the importance of considering side reactions when designing protocols to maximize ligation yields.  相似文献   

4.
Programmable interactions allow nucleic acid molecules to template chemical reactions by increasing the effective molarities of appended reactive groups. DNA/RNA‐triggered reactions can proceed, in principle, with turnover in the template. The amplification provided by the formation of many product molecules per template is a valuable asset when the availability of the DNA or RNA target is limited. However, turnover is usually impeded by reaction products that block access to the template. Product inhibition is most severe in ligation reactions, where products after ligation have dramatically increased template affinities. We introduce a potentially generic approach to reduce product inhibition in nucleic acid‐programmed ligation reactions. A DNA‐triggered ligation–cyclization sequence (“cycligation”) of bifunctional peptide nucleic acid (PNA) conjugates affords cyclic ligation products. Melting experiments revealed that product cyclization is accompanied by a pronounced decrease in template affinity compared to linear ligation products. The reaction system relies upon haloacetylated PNA‐thioesters and isocysteinyl‐PNA‐cysteine conjugates, which were ligated on a DNA template according to a native chemical ligation mechanism. Dissociation of the resulting linear product‐template duplex (induced by, for example, thermal cycling) enabled product cyclization through sulfur‐halide substitution. Both ligation and cyclization are fast reactions (ligation: 86 % yield after 20 min, cyclization: quantitative after 5 min). Under thermocycling conditions, the DNA template was able to trigger the formation of new product molecules when fresh reactants were added. Furthermore, cycligation produced 2–3 times more product than a conventional ligation reaction with substoichiometric template loads (0.25–0.01 equiv). We believe that cyclization of products from DNA‐templated reactions could ultimately afford systems that completely overcome product inhibition.  相似文献   

5.
DNA-controlled reactions offer interesting opportunities in biological, chemical, and nanosciences. In practical applications, such as in DNA sequence analysis, the sequence fidelity of the chemical-ligation reaction is of central importance. We present a ligation reaction that is as fast as and much more selective than enzymatic T4 ligase-mediated oligonucleotide ligations. The selectivity was higher than 3000-fold in discriminating matched from singly mismatched DNA templates. It is demonstrated that this enormous selectivity is the hallmark of the particular ligation architecture, which is distinct from previous ligation architectures designed as "nick ligations". Interestingly, the fidelity of the native chemical ligation of peptide nucleic acids was increased by more than one order of magnitude when performing the ligation in such a way that an abasic-site mimic was formed opposite an unpaired template base. It is shown that the high sequence fidelity of the abasic ligation could facilitate the MALDI-TOF mass-spectrometric analysis of early cancer onset by allowing the detection of as little as 0.2 % of single-base mutant DNA in the presence of 99.8 % wild-type DNA.  相似文献   

6.
Affinity molecules labeled with different reporter groups, such as fluorophores or radionuclides, are valuable research tools used in a variety of applications. One class of engineered affinity proteins is Affibody molecules, which are small (6.5 kDa) proteins that can be produced by solid phase peptide synthesis (SPPS), thereby allowing site-specific incorporation of reporter groups during synthesis. The Affibody molecules are triple-helix proteins composed of a variable part, which gives the protein its binding specificity, and a constant part, which is identical for all Affibody molecules. In the present study, native chemical ligation (NCL) has been applied for combinatorial assembly of Affibody molecules from peptide fragments produced by Fmoc SPPS. The concept is demonstrated for the synthesis of three different Affibody molecules. The cysteine residue introduced at the site of ligation can be used for directed immobilization and does not interfere with the function of the investigated proteins. This strategy combines a high-yield production method with facilitated preparation of proteins with different C-terminal modifications.  相似文献   

7.
Fusion protein constructs for labeled peptides were generated with the 114 amino acid thioredoxin (TRX), coupled with the incorporation of a histidine tag for affinity purification. Two tandem AhdI sites were designed in the multiple cloning site of the fusion vector according to our novel unidirectional TA cloning methodology named PRESAT-vector, allowing one-step background-free cloning of DNA fragments. Constructs were designed to incorporate the four residue sequence Ile-Asp-Gly-Arg to generate pure peptides following Factor Xa cleavage of the fusion protein. The system is efficient and cost-effective for isotopic labeling of peptides for heteronuclear NMR studies. Seven peptides of varying length, including pituitary adenylate cyclase activating polypeptide (PACAP), vasoactive intestinal peptide (VIP) and ubiquitin interacting motif (UIM), were expressed using this TRX fusion system to give soluble fusion protein constructs in all cases. Three alternative methods for the preparation of DNA fragments were applied depending on the length of the peptides, such as polymerase chain reaction, chemical synthesis or a 'semi-synthetic method', which is a combination of chemical synthesis and enzymatic extension. The ability easily to construct, express and purify recombinant peptides in a high-throughput manner will be of enormous benefit in areas of biomedical research and drug discovery.  相似文献   

8.
The copper(I)‐mediated azide–alkyne cycloaddition (CuAAC) of 3′‐propargyl ether and 5′‐azide oligonucleotides is a particularly promising ligation system because it results in triazole linkages that effectively mimic the phosphate–sugar backbone of DNA, leading to unprecedented tolerance of the ligated strands by polymerases. However, for a chemical ligation strategy to be a viable alternative to enzymatic systems, it must be equally as rapid, as discriminating, and as easy to use. We found that the DNA‐templated reaction with these modifications was rapid under aerobic conditions, with nearly quantitative conversion in 5 min, resulting in a kobs value of 1.1 min?1, comparable with that measured in an enzymatic ligation system by using the highest commercially available concentration of T4 DNA ligase. Moreover, the CuAAC reaction also exhibited greater selectivity in discriminating C:A or C:T mismatches from the C:G match than that of T4 DNA ligase at 29 °C; a temperature slightly below the perfect nicked duplex dissociation temperature, but above that of the mismatched duplexes. These results suggest that the CuAAC reaction of 3′‐propargyl ether and 5′‐azide‐terminated oligonucleotides represents a complementary alternative to T4 DNA ligase, with similar reaction rates, ease of setup and even enhanced selectivity for certain mismatches.  相似文献   

9.
We report the convergent total synthesis of two proteins: DARPin pE59 and Bacillus amyloliquefaciens RNase (Barnase). Leveraging our recently developed fast‐flow peptide‐synthesis platform, we rapidly explored numerous conditions for the assembly of long polypeptides, and were able to mitigate common side reactions, including deletion and aspartimide products. We report general strategies for improving the synthetic quality of difficult peptide sequences with our system. High‐quality protein fragments produced under optimal synthetic conditions were subjected to convergent native chemical ligation, which afforded native full‐length proteins after a final desulfurization step. Both DARPin and Barnase were folded and found to be as active as their recombinant analogues.  相似文献   

10.
Recently, solubilizing tag methods (Trt-K and Trt-R method) were developed for the challenging synthesis of peptides/proteins by means of native chemical ligation. In this system, the solubilizing tag can be attached to the Cys side chain by simply mixing the tag-introducing reagent under acidic conditions. The tagged peptides/proteins exhibited high water solubility thanks to the introduction of redundant oligo-Lys/Arg. In the final reaction, the tag can be quickly and cleanly detached by a standard deprotection reaction with trifluoroacetic acid. Herein, the development and application of these methods are described.  相似文献   

11.
The first chemical synthesis of (5'S,5S,6S)-5',6-cyclo-5-hydroxy-5,6-dihydro-2'-deoxyuridine [(5'S,5S,6S)-cyclo-5-OH-dHdU], a radiation-induced decomposition product of 2'-deoxycytidine in aerated solution, is reported. Subsequently, 2'-deoxycytidine was incorporated into oligodeoxyribonucleotides with defined sequences by using an optimized system of protection that takes into account the reactivity and stability of the modified building blocks. After deprotection and purification, the chemical composition of the modified DNA fragments was assessed by enzymatic digestions and mass spectrometry measurements. The MS analyses confirmed the presence and integrity of the lesion within the synthesized DNA fragments. In vitro replication and repair studies showed that (5'S,5S,6S)-cyclo-5-OH-dHdU acts as a block for DNA polymerases when inserted into DNA oligomers and is not excised by any of the tested DNA N-glycosylases. Therefore, (5'S,5S,6S)-cyclo-5-OH-dHdU may represent a potential lethal lesion within the cell if it is not removed by the nucleotide excision repair machinery.  相似文献   

12.
DNA ligation is essential to many molecular biology manipulations, but this reaction is often carried out by following generic guidelines or by trial and error. Maximizing the desired ligation product is especially important in DNA library construction for directed evolution experiments since library diversity is directly affected by ligation efficiency. Here, we suggest that display vectors that rely on Type IIP restriction sites for cloning should be redesigned to utilize Type IIS restriction sites instead because ligation yield is significantly improved: we observed up to 15- and 2.6-fold increases in desired products for circular and linear ligation reactions, respectively. To guide ligation optimization more rationally, we developed an easily parameterized thermodynamic model that predicts product distributions based on input DNA concentrations and free energies of the ligation events. We applied this model to study ligation reactions using a ribosome display vector redesigned with Type IIS restriction sites (pRDV2). We computationally predicted and experimentally validated the relative abundance of various products in three-piece linear ligations as well as the extent of transformation from vector-insert circular ligations. Based on our results, we provide general insights into ligation and we outline guidelines for optimizing this reaction for both in vivo and in vitro display methodologies.  相似文献   

13.
In order to terminate the polymerase reaction at a desired position, a caged thymine derivative--4-O-[2-(2-nitrophenyl)propyl]thymine--was incorporated into PCR primers. In the PCR cycles, the elongation of the nascent strand (5'-->3' direction) by polymerase was site-selectively terminated at the 3'-side of T(NPP). Accordingly, predetermined protruding ends were obtained after the removal of the protecting group by short UVA irradiation. Recombinant vectors coding the GFP gene were successfully prepared by direct ligation of these light-assisted cohesive-ending PCR (LACE-PCR) products with scission fragments obtained by use either of restriction enzymes or of artificial restriction DNA cutters and were used for transformation of E. coli.  相似文献   

14.
The C‐terminal activation of peptides as prerequisite for the formation or ligation of peptide fragments is often associated with the problem of epimerization. We report that ruthenium‐catalyzed alkyne addition with (+)‐2,3‐O‐isopropylidene‐2,3‐dihydroxy‐1,4‐bis(diphenylphosphino)butane as ligand allows the racemization‐free synthesis of peptide enol esters tolerating a wide range of functional groups. The transformation can be performed in a variety of different solvents addressing the solubility issues imposed by peptides with varying amino acid side chain patterns. We show that peptide enol esters with an amide motif in the enol moiety are excellent acyl donors for the peptide condensation with other peptide fragments in organic solvents using serine endopeptidase subtilisin A as catalyst. The reported combination of transition metal catalysis with enzymatic peptide ligations adds an important tool for the racemization‐free synthesis and ligation of peptides which is compatible even with unprotected amino acid side chains.  相似文献   

15.
Single-nucleotide polymorphism (SNP) detection is becoming important in molecular diagnostics, clinical assay, and novel drug development. Electrochemical methods are well suited for the DNA diagnostics system. Since electrochemical reactions directly emit an electronic signal, expensive signal transduction equipment is not required. We describe the development of a novel DNA sensor that utilizes impedance spectroscopy and DNA ligation reaction on a gold electrode. Impedance spectroscopy enables label-free detection and is nondestructive and useful in equivalent circuit models for interpretation on an electrode surface, whereas from the ligation reaction, the specificity is derived by the allele-specific oligonucleotide of the capture probe on immobilized gold electrode. In other words, DNA diagnostics system using the combination of impedance spectroscopy and ligation reaction is simple, rapid, and allele specific. In this report, we have described a ligation-based impedimetric DNA sensor and the analysis of Trp64Arg polymorphism in the beta3-adrenergic receptor gene (ADRβ3).  相似文献   

16.
Template-guided chemical reactions between nucleic acid strands are an important process in biomedical research. However, almost all of these reactions employ an oligonucleotide-templated approach that is based on the double-helix alignment. The moderate stability of the double helix makes this approach unsuitable for many chemical reactions, so alternative nucleic acid alignment mechanisms, demonstrating higher thermal and chemical stability, are desirable. Earlier, we described a noncovalent coupling mechanism between DNA strands through a quadruplex-and-Mg2+ connection (QMC). QMC is based on G-quadruplexes and allows unusually stable and specific interactions. Herein, a novel catalytic nucleic acid reaction, based on QMC, is described. This approach uses G-tetrads as a structural and recognition element without employing Watson-Crick complementarity rules at any stage of substrate/catalyst formation or interaction between them. Quadruplex-templated ligation can be achieved through the self-ligation of two nucleic acid strands, or through a quadruplex catalyst, which forms a G-triplex and specifically connects the strands. The process is extraordinarily robust and efficient. For instance, the ligation of carbodiimide-activated substrates can proceed in boiling solutions, and complete ligation is demonstrated within a minute. The quadruplex-templated and catalyzed reactions will create new opportunities for chemical reactions requiring harsh experimental conditions.  相似文献   

17.
本文综述了多肽的液相分段合成方法,这些合成方法是近年来多肽和蛋白质合成领域中的一种发展趋势.详细介绍了天然化学连接、化学区域选择连接、施陶丁格连接等方法,并对这些方法进行了比较,指出其优点及不足并提出改进办法.最后对多肽合成技术的发展做了进一步展望.  相似文献   

18.
The cyclic cystine knot motif, as defined by the cyclotide peptide family, is an attractive scaffold for protein engineering. To date, however, the utilisation of this scaffold has been limited by the inability to synthesise members of the most diverse and biologically active subfamily, the bracelet cyclotides. This study describes the synthesis and first direct oxidative folding of a bracelet cyclotide-cycloviolacin O2-and thus provides an efficient method for exploring the most potent cyclic cystine knot peptides. The linear chain of cycloviolacin O2 was assembled by solid-phase Fmoc peptide synthesis and cyclised by thioester-mediated native chemical ligation, and the inherent difficulties of folding bracelet cyclotides were successfully overcome in a single-step reaction. The folding pathway was characterised and was found to include predominating fully oxidised intermediates that slowly converted to the native peptide structure.  相似文献   

19.
Expressed protein ligation (EPL) is a protein engineering tool for post-translational ligation of protein or peptide fragments. This technique allows modification of specific parts of proteins, opening possibilities for incorporating probes for biophysical applications such as nuclear magnetic resonance (NMR) or fluorescence spectroscopy. The application for oligomeric proteins, however, is restricted by the need to obtain a large excess of active dimer over reactants and intermediates. Here, we explored the suitability of the EPL reaction for large dimeric proteins using the molecular chaperone Hsp90 as a model. We systematically varied the reaction conditions and the preparation protocols for the reactants. Modulation of the ligation site by shortening the flexible segment at the N-terminus of the C-terminal reactant increased the yield sufficiently to isolate the product by chromatography. Under those conditions, 41% of the used C-terminal fragment could be successfully ligated. We discuss possible up-scaling for segmental isotope labelling for NMR applications.  相似文献   

20.
Protein C-terminal hydrazides are useful for bioconjugation and construction of proteins from multiple fragments through native chemical ligation. To generate C-terminal hydrazides in proteins, an efficient intein-based preparation method has been developed by using thiols and hydrazine to accelerate the formation of the transient thioester intermediate and subsequent hydrazinolysis. This approach not only increases the yield, but also improves biocompatibility. The scope of the method has been expanded by employing Pyrococcus horikoshii RadA split intein, which can accommodate a broad range of extein residues before the site of cleavage. The use of split RadA minimizes premature intein N cleavage in vivo and offers control over the initiation of the intein N cleavage reaction. It is expected that this versatile preparation method will expand the utilization of protein C-terminal hydrazides in protein preparation and modification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号