首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Streptococcus agalactiae or Group B Streptococcus (GBS) is a Gram-positive bacterial pathobiont that is the etiological cause of severe perinatal infections. GBS can colonize the vagina of pregnant patients and invade tissues causing ascending infections of the gravid reproductive tract that lead to adverse outcomes including preterm birth, neonatal sepsis, and maternal or fetal demise. Additionally, transmission of GBS during labor or breastfeeding can also cause invasive infections of neonates and infants. However, human milk has also been shown to have protective effects against infection; a characteristic that is likely derived from antimicrobial and immunomodulatory properties of molecules that comprise human milk. Recent evidence suggests that human milk oligosaccharides (HMOs), short-chain sugars that comprise 8–20 % of breast milk, have antimicrobial and anti-biofilm activity against GBS and other bacterial pathogens. Additionally, HMOs have been shown to potentiate the activity of antibiotics against GBS. This review presents the most recent published work that studies the interaction between HMOs and GBS.  相似文献   

2.
Group B Streptococcus (GBS) is an encapsulated Gram-positive bacterial pathogen that causes severe perinatal infections. Human milk oligosaccharides (HMOs) are short-chain sugars that have recently been shown to possess antimicrobial and anti-biofilm activity against a variety of bacterial pathogens, including GBS. We have expanded these studies to demonstrate that HMOs can inhibit and dismantle biofilm in both invasive and colonizing strains of GBS. A cohort of 30 diverse strains of GBS were analyzed for susceptibility to HMO-dependent biofilm inhibition or destruction. HMOs were significantly effective at inhibiting biofilm in capsular-type- and sequence-type-specific fashion, with significant efficacy in CpsIb, CpsII, CpsIII, CpsV, and CpsVI strains as well as ST-1, ST-12, ST-19, and ST-23 strains. Interestingly, CpsIa as well as ST-7 and ST-17 were not susceptible to the anti-biofilm activity of HMOs, underscoring the strain-specific effects of these important antimicrobial molecules against the perinatal pathogen Streptococcus agalactiae.  相似文献   

3.
Biofilms containing Candida albicans are responsible for a wide variety of clinical infections. The protective effects of the biofilm matrix, the low metabolic activity of microorganisms within a biofilm and their high mutation rate, significantly enhance the resistance of biofilms to conventional antimicrobial treatments. Peptoids are peptide‐mimics that share many features of host defence antimicrobial peptides but have increased resistance to proteases and therefore have better stability in vivo. The activity of a library of peptoids was tested against monospecies and polymicrobial bacterial/fungal biofilms. Selected peptoids showed significant bactericidal and fungicidal activity against the polymicrobial biofilms. This coupled with low cytotoxicity suggests that peptoids could offer a new option for the treatment of clinically relevant polymicrobial infections.  相似文献   

4.
Bacterial-related infections can be hazardous for human health and the surrounding environment. Traditional antibiotic-based treatments for these infections are increasingly ineffective due to the emergence of antibiotic-resistant bacteria. Antimicrobial peptide mimics have emerged as promising replacements owing to their potency against bacteria and lack of susceptibility to generate resistant cells. Thus, we synthesized a random copolymer, consisting of aminopropyl methacrylamide and benzyl methacrylamide (AB polymer) by random co-polymerization that mimics host–defense antimicrobial peptides. For its use as a coating, the AB polymer is drop-casted onto a cleaned glass substrate and tested for its antibacterial activity toward Escherichia coli and Staphylococcus aureus, wherein almost 99% of antibacterial activity was observed within 5 min. The prepared coating also possessed excellent longevity characteristics of up to 5 weeks. The AB polymer is also able to inhibit biofilm formation as well as disrupt a mature biofilm and can also be employed as an antibacterial wipe for cleaning bacterial contaminated surfaces. Mechanism study through SEM analysis showed that the AB polymer ruptures the bilayer membrane of both bacterial strains, thereby leading to pore formation causing cell death. Cell viability study depicted that 71% of the A549 lung carcinoma epithelial cells are viable compared to 80% on bare glass substrate. Thus, the synthesized AB polymer may be used in a variety of antibacterial applications directly in the form of solution (wipes) or forming a coating (drop casted/spray coated) for battling bacterial colonization.  相似文献   

5.
The regulation of infection and inflammation by a variety of host peptides may represent an evolutionary failsafe in terms of functional degeneracy and it emphasizes the significance of host defense in survival. Neuropeptides have been demonstrated to have similar antimicrobial activities to conventional antimicrobial peptides with broad-spectrum action against a variety of microorganisms. Neuropeptides display indirect anti-infective capacity via enhancement of the host’s innate and adaptive immune defense mechanisms. However, more recently concerns have been raised that some neuropeptides may have the potential to augment microbial virulence. In this review we discuss the dual role of neuropeptides, perceived as a double-edged sword, with antimicrobial activity against bacteria, fungi, and protozoa but also capable of enhancing virulence and pathogenicity. We review the different ways by which neuropeptides modulate crucial stages of microbial pathogenesis such as adhesion, biofilm formation, invasion, intracellular lifestyle, dissemination, etc., including their anti-infective properties but also detrimental effects. Finally, we provide an overview of the efficacy and therapeutic potential of neuropeptides in murine models of infectious diseases and outline the intrinsic host factors as well as factors related to pathogen adaptation that may influence efficacy.  相似文献   

6.
One promising strategy to combat antibiotic-resistant bacteria is to develop compounds that block bacterial defenses against antibacterial conditions produced by the innate immune system. Salmonella enterica, which causes food-borne gastroenteritis and typhoid fever, requires histidine kinases (HKs) to resist innate immune defenses such as cationic antimicrobial peptides (CAMPs). Herein, we report that 2-aminobenzothiazoles block histidine kinase-dependent phenotypes in Salmonella enterica serotype Typhimurium. We found that 2-aminobenzothiazoles inhibited growth under low Mg2+, a stressful condition that requires histidine kinase-mediated responses, and decreased expression of the virulence genes pagC and pagK. Furthermore, we discovered that 2-aminobenzothiazoles weaken Salmonella’s resistance to polymyxin B and polymyxin E, which are last-line antibiotics and models for host defense CAMPs. These findings raise the possibilities that 2-aminobenzothiazoles can block HK-mediated bacterial defenses and can be used in combination with polymyxins to treat infections caused by Salmonella.  相似文献   

7.
Pseudomonas aeruginosa is an opportunistic ESKAPE pathogen that produces two lectins, LecA and LecB, as part of its large arsenal of virulence factors. Both carbohydrate-binding proteins are central to the initial and later persistent infection processes, i. e. bacterial adhesion and biofilm formation. The biofilm matrix is a major resistance determinant and protects the bacteria against external threats such as the host immune system or antibiotic treatment. Therefore, the development of drugs against the P. aeruginosa biofilm is of particular interest to restore efficacy of antimicrobials. Carbohydrate-based inhibitors for LecA and LecB were previously shown to efficiently reduce biofilm formations. Here, we report a new approach for inhibiting LecA with synthetic molecules bridging the established carbohydrate-binding site and a central cavity located between two LecA protomers of the lectin tetramer. Inspired by in silico design, we synthesized various galactosidic LecA inhibitors with aromatic moieties targeting this central pocket. These compounds reached low micromolar affinities, validated in different biophysical assays. Finally, X-ray diffraction analysis revealed the interactions of this compound class with LecA. This new mode of action paves the way to a novel route towards inhibition of P. aeruginosa biofilms.  相似文献   

8.
Trp‐rich antimicrobial peptides play important roles in the host innate defense mechanism of many plants and animals. A series of short Trp‐rich peptides derived from the C‐terminal region of Bothrops asper myothoxin II, a Lys49 phospholipase A2 (PLA2), were found to reproduce the antimicrobial activities of their parent molecule. Of these peptides, KKWRWWLKALAKK—designated PEM‐2—was found to display improved activity against both Gram‐positive and Gram‐negative bacteria. To improve the antimicrobial activity of PEM‐2 for potential clinical applications further, we determined the solution structure of PEM‐2 bound to membrane‐mimetic dodecylphosphocholine (DPC) micelles by two‐dimensional NMR methods. The DPC micelle‐bound structure of PEM‐2 adopts an α‐helical conformation and the positively charged residues are clustered together to form a hydrophilic patch. The surface electrostatic potential map indicates that two of the three tryptophan residues are packed against the peptide backbone and form a hydrophobic face with Leu7, Ala9, and Leu10. A variety of biophysical and biochemical experiments, including circular dichroism, fluorescence spectroscopy, and microcalorimetry, were used to show that PEM‐2 interacted with negatively charged phospholipid vesicles and efficiently induced dye release from these vesicles, suggesting that the antimicrobial activity of PEM‐2 could be due to interactions with bacterial membranes. Potent analogues of PEM‐2 with enhanced antimicrobial and less pronounced hemolytic activities were designed with the aid of these structural studies.  相似文献   

9.
The formation of biofilm over the urinary catheter leading to CAUTI remains an unresolved major cause of bacteremia in hospital patients. In-order to find an alternative, feasible solution we developed a new potential composite film containing polyvinyl alcohol, polyvinylpyrrolidone, and chitosan by solvent evaporation technique. The developed composite film was loaded with carvacrol (CAV), a naturally occurring broad-spectrum antimicrobial agent and was characterized. The CAV-loaded film exhibited appreciable growth inhibition, resistance to biofilm formation, and microbial penetration of infectious bacterial strains isolated from hospital such as Escherichia coli, Bacillus subtilis, and Salmonella typhimurium. Thus, the developed CAV-loaded polymer composite film can serve as a potential alternative biomaterial for developing biofilm formation-resistant urinary catheter.  相似文献   

10.
Pseudomonas aeruginosa is an opportunistic pathogen causing several chronic infections resistant to currently available antibiotics. Its pathogenicity is related to the production of different virulence factors such as biofilm and protease secretion. Pseudomonas communities can persist in biofilms that protect bacterial cells from antibiotics. Hence, there is a need for innovative approaches that are able to counteract these virulence factors, which play a pivotal role, especially in chronic infections. In this context, antimicrobial peptides are emerging drugs showing a broad spectrum of antibacterial activity. Here, we tested the anti-virulence activity of a chionodracine-derived peptide (KHS-Cnd) on five P. aeruginosa clinical isolates from cystic fibrosis patients. We demonstrated that KHS-Cnd impaired biofilm development and caused biofilm disaggregation without affecting bacterial viability in nearly all of the tested strains. Ultrastructural morphological analysis showed that the effect of KHS-Cnd on biofilm could be related to a different compactness of the matrix. KHS-Cnd was also able to reduce adhesion to pulmonary cell lines and to impair the invasion of host cells by P. aeruginosa. A cytotoxic effect of KHS-Cnd was observed only at the highest tested concentration. This study highlights the potential of KHS-Cnd as an anti-biofilm and anti-virulence molecule against P. aeruginosa clinical strains.  相似文献   

11.
Sortase A (SrtA) is a membrane-associated enzyme that anchors surface-exposed proteins to the cell wall envelope of Gram-positive bacteria such as Staphylococcus aureus. As SrtA is essential for Gram-positive bacterial pathogenesis but dispensable for microbial growth or viability, SrtA is considered a favorable target for the enhancement of novel anti-infective drugs that aim to interfere with key bacterial virulence mechanisms, such as biofilm formation, without developing drug resistance. Here, we used virtual screening to search an in-house natural compound library and identified two natural compounds, N1287 (Skyrin) and N2576 ((4,5-dichloro-1H-pyrrol-2-yl)-[2,4-dihydroxy-3-(4-methyl-pentyl)-phenyl]-methanone) that inhibited the enzymatic activity of SrtA. These compounds also significantly reduced the growth of S. aureus but possessed moderate mammalian toxicity. Furthermore, S. aureus strains treated with these compounds exhibited reduction in adherence to host fibrinogen, as well as biofilm formation. Hence, these compounds may represent an anti-infective therapy without the side effects of antibiotics.  相似文献   

12.
Beetles share with other eukaryotes an innate immune system that mediates endogenous defense against pathogens. In addition, larvae of some taxa produce fluid exocrine secretions that contain antimicrobial compounds. In this paper, we provide evidence that larvae of the brassy willow leaf beetle Phratora vitellinae constitutively release volatile glandular secretions that combat pathogens in their microenvironment. We identified salicylaldehyde as the major component of their enveloping perfume cloud, which is emitted by furrow-shaped openings of larval glandular reservoirs and which inhibits in vitro the growth of the bacterial entomopathogen Bacillus thuringiensis. The suggested role of salicylaldehyde as a fumigant in exogenous antimicrobial defense was confirmed in vivo by its removal from glandular reservoirs. This resulted in an enhanced susceptibility of the larvae to infection with the fungal entomopathogens Beauveria bassiana and Metarhizium anisopliae. Consequently, we established the hypothesis that antimicrobial defense in beetles can be expanded beyond innate immunity to include external disinfection of their microenvironment, and we report for the first time the contribution of fumigants to antimicrobial defense in animals.  相似文献   

13.
The ability to form biofilms contributes significantly to the pathogenesis of many microbial infections, including a variety of ocular diseases often associated with the biofilm formation on foreign materials. Carvacrol (Car.) is an important component of essential oils and recently has attracted much attention pursuant to its ability to promote microbial biofilm disruption. In the present study Car. has been encapsulated in poly(dl-lactide-co-glycolide (PLGA) nanocapsules in order to obtain a suitable drug delivery system that could represent a starting point for developing new therapeutic strategies against biofilm-associated infections, such as improving the drug effect by associating an antimicrobial agent with a biofilm viscoelasticity modifier.  相似文献   

14.
Chronic infection with Helicobacter pylori increases risk of gastric diseases including gastric cancer. Despite development of a robust immune response, H. pylori persists in the gastric niche. Progression of gastric inflammation to serious disease outcomes is associated with infection with H. pylori strains which encode the cag Type IV Secretion System (cag T4SS). The cag T4SS is responsible for translocating the oncogenic protein CagA into host cells and inducing pro-inflammatory and carcinogenic signaling cascades. Our previous work demonstrated that nutrient iron modulates the activity of the T4SS and biogenesis of T4SS pili. In response to H. pylori infection, the host produces a variety of antimicrobial molecules, including the iron-binding glycoprotein, lactoferrin. Our work shows that apo-lactoferrin exerts antimicrobial activity against H. pylori under iron-limited conditions, while holo-lactoferrin enhances bacterial growth. Culturing H. pylori in the presence of holo-lactoferrin prior to co-culture with gastric epithelial cells, results in repression of the cag T4SS activity. Concomitantly, a decrease in biogenesis of cag T4SS pili at the host-pathogen interface was observed under these culture conditions by high-resolution electron microscopy analyses. Taken together, these results indicate that acquisition of alternate sources of nutrient iron plays a role in regulating the pro-inflammatory activity of a bacterial secretion system and present novel therapeutic targets for the treatment of H. pylori-related disease.  相似文献   

15.
Prodiginines are a group of naturally occurring pyrrole alkaloids produced by various microorganisms and known for their broad biological activities. The production of nature‐inspired cyclic prodiginines was enabled by combining organic synthesis with a mutasynthesis approach based on the GRAS (generally recognized as safe) certified host strain Pseudomonas putida KT2440. The newly prepared prodiginines exerted antimicrobial effects against relevant alternative biotechnological microbial hosts whereas P. putida itself exhibited remarkable tolerance against all tested prodiginines, thus corroborating the bacterium's exceptional suitability as a mutasynthesis host for the production of these cytotoxic secondary metabolites. Moreover, the produced cyclic prodiginines proved to be autophagy modulators in human breast cancer cells. One promising cyclic prodiginine derivative stood out, being twice as potent as prodigiosin, the most prominent member of the prodiginine family, and its synthetic derivative obatoclax mesylate.  相似文献   

16.
Synthesis of an eco-friendly and efficient antibacterial and antifouling coatings is presented by exploiting urushiol, a natural varnishing material. Since urushiol has inherent outstanding surface-protecting and antimicrobial properties, a series of poly (methyl methacrylate)-urushiol polymer compositions were prepared and fabricated into films. The prepared films were subjected to antimicrobial and antifouling studies. The polymer systems were characterized by various physico-spectroscopic techniques such as 1H NMR, Fourier transform infrared spectroscopy, differential scanning calorimetry, atomic force microscopy, and thermal gravimetric analysis. The confocal laser scanning micrographs, obtained for Pseudomonas aeruginosa biofilm formation, demonstrated an excellent antimicrobial response of the urushiol-incorporated polymers against this bacterial strain. We also demonstrated an inhibitory attachment effect against Navicula incerta, a fouling microalgal strain.  相似文献   

17.
Escherichia coli and other Enterobacteriaceae thrive in robust biofilm communities through the coproduction of curli amyloid fibers and phosphoethanolamine cellulose. Curli promote adhesion to abiotic surfaces and plant and human host tissues and are associated with pathogenesis in urinary tract infection and food-borne illness. The production of curli in the host has also been implicated in the pathogenesis of neurodegenerative diseases. We report that the natural product nordihydroguaiaretic acid (NDGA) is effective as a curlicide in E. coli. NDGA prevents CsgA polymerization in vitro in a dose-dependent manner. NDGA selectively inhibits cell-associated curli assembly and inhibits uropathogenic E. coli biofilm formation. More broadly, this work emphasizes the ability to evaluate and identify bioactive amyloid assembly inhibitors by using the powerful gene-directed amyloid biogenesis machinery in E. coli.  相似文献   

18.
Vat polymerization technology allows filler particles to be incorporated into photosensitive 3D printing resin to improve the properties of the printed material. This method can be used to produce medical devices with an antimicrobial effect that can reduce biofilm formation and reduce infections due to indwelling devices. Metal oxides have the potential to combat antibiotic-resistant bacteria, further lowering the risk of hospital-acquired infections. The antimicrobial agent in this study, silver oxide, was evaluated for its antimicrobial effect against gram-positive bacteria (Staphylococcus epidermidis) as these are the main cause of biofilm formation. The 3D printed samples demonstrated a strong antimicrobial effect at low concentrations of 1 wt.%. Two vat polymerization technologies, stereolithography (SLA) and digital light processing (DLP), were compared for their suitability for producing 3D printed samples with an antimicrobial effect. DLP successfully produced samples with mechanical properties comparable to the base resin, whereas SLA samples had reduced mechanical strength at higher concentrations of silver oxide filler. Neither printing technology nor silver oxide concentration had a statistically significant effect on the mechanical properties of the printed materials.  相似文献   

19.
Host defense peptides can modulate the innate immune response and boost infection-resolving immunity, while dampening potentially harmful pro-inflammatory (septic) responses. Both antimicrobial and/or immunomodulatory activities are an integral part of the process of innate immunity, which itself has many of the hallmarks of successful anti-infective therapies, namely rapid action and broad-spectrum antimicrobial activities. This gives these peptides the potential to become an entirely new therapeutic approach against bacterial infections. This review details the role and activities of these peptides, and examines their applicability as development candidates for use against bacterial infections.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号