首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Hsp90 is one of the most abundant chaperone proteins in the cytosol. In an ATP-dependent manner it plays an essential role in the folding and activation of a range of client proteins involved in signal transduction and cell cycle regulation. We used NMR shift perturbation experiments to obtain information on the structural implications of the binding of AMP-PNP (adenylyl-imidodiphosphate-a non-hydrolysable ATP analogue), ADP and the inhibitors radicicol and geldanamycin. Analysis of (1)H,(15)N correlation spectra showed a specific pattern of chemical shift perturbations at N210 (ATP binding domain of Hsp90, residues 1-210) upon ligand binding. This can be interpreted qualitatively either as a consequence of direct ligand interactions or of ligand-induced conformational changes within the protein. All ligands show specific interactions in the binding site, which is known from the crystal structure of the N-terminal domain of Hsp90. For AMP-PNP and ADP, additional shift perturbations of residues outside the binding pocket were observed and can be regarded as a result of conformational rearrangement upon binding. According to the crystal structures, these regions are the first alpha-helix and the "ATP-lid" ranging from amino acids 85 to 110. The N-terminal domain is therefore not a passive nucleotide-binding site, as suggested by X-ray crystallography, but responds to the binding of ATP in a dynamic way with specific structural changes required for the progression of the ATPase cycle.  相似文献   

3.
4.
Many RNAs do not directly code proteins but are nonetheless indispensable to cellular function. These strands fold into intricate three-dimensional shapes that are essential structures in protein synthesis, splicing, and many other processes of gene regulation and expression. A variety of biophysical and biochemical methods are now showing, in real time, how ribosomal subunits and other ribonucleoprotein complexes assemble from their molecular components. Footprinting methods are particularly useful for studying the folding of long RNAs: they provide quantitative information about the conformational state of each residue and require little material. Data from footprinting complement the global information available from small-angle X-ray scattering or cryo-electron microscopy, as well as the dynamic information derived from single-molecule F?rster resonance energy transfer (FRET) and NMR methods. In this Account, I discuss how we have used hydroxyl radical footprinting and other experimental methods to study pathways of RNA folding and 30S ribosome assembly. Hydroxyl radical footprinting probes the solvent accessibility of the RNA backbone at each residue in as little as 10 ms, providing detailed views of RNA folding pathways in real time. In conjunction with other methods such as solution scattering and single-molecule FRET, time-resolved footprinting of ribozymes showed that stable domains of RNA tertiary structure fold in less than 1 s. However, the free energy landscapes for RNA folding are rugged, and individual molecules kinetically partition into folding pathways that lead through metastable intermediates, stalling the folding or assembly process. Time-resolved footprinting was used to follow the formation of tertiary structure and protein interactions in the 16S ribosomal RNA (rRNA) during the assembly of 30S ribosomes. As previously observed in much simpler ribozymes, assembly occurs in stages, with individual molecules taking different routes to the final complex. Interactions occur concurrently in all domains of the 16S rRNA, and multistage protection of binding sites of individual proteins suggests that initial encounter complexes between the rRNA and ribosomal proteins are remodeled during assembly. Equilibrium footprinting experiments showed that one primary binding protein was sufficient to stabilize the tertiary structure of the entire 16S 5'-domain. The rich detail available from the footprinting data showed that the secondary assembly protein S16 suppresses non-native structures in the 16S 5'-domain. In doing so, S16 enables a conformational switch distant from its own binding site, which may play a role in establishing interactions with other domains of the 30S subunit. Together, the footprinting results show how protein-induced changes in RNA structure are communicated over long distances, ensuring cooperative assembly of even very large RNA-protein complexes such as the ribosome.  相似文献   

5.
Biological function depends on molecular dynamics that lead to excursions from highly populated ground states to much less populated excited states. The low populations and the transient formation of such excited states render them invisible to the conventional methods of structural biology. Thus, while detailed pictures of ground-state structures of biomolecules have emerged over the years, largely through X-ray diffraction and solution nuclear magnetic resonance (NMR) spectroscopy studies, much less structural data has been accumulated on the conformational properties of the invisible excited states that are necessary to fully explain function. NMR spectroscopy is a powerful tool for studying conformational dynamics because it is sensitive to dynamics over a wide range of time scales, extending from picoseconds to seconds and because information is, in principle, available at nearly every position in the molecule. Here an NMR method for quantifying millisecond time scale dynamics that involve transitions between different molecular conformations is described. The basic experimental approach, termed relaxation dispersion NMR spectroscopy, is outlined to provide the reader with an intuitive feel for the technology. A variety of different experiments that probe conformational exchange at different sites in proteins are described, including a brief summary of data-fitting procedures to extract both the kinetic and thermodynamic properties of the exchange process and the structural features of the invisible excited states along the exchange pathway. It is shown that the methodology facilitates detection of intermediates and other excited states that are populated at low levels, 0.5% or higher, that cannot be observed directly in spectra, so long as they exchange with the observable ground state of the protein on the millisecond time scale. The power of the methodology is illustrated by a detailed application to the study of protein folding of the small modular SH3 domain. The kinetics and thermodynamics that describe the folding of this domain have been characterized through the effects of temperature, pressure, side-chain deuteration, and mutation, and the structural features of a low-populated folding intermediate have been assessed. Despite the fact that many previous studies have shown that SH3 domains fold via a two-state mechanism, the NMR methods presented unequivocally establish the presence of an on-pathway folding intermediate. The unique capabilities of NMR relaxation dispersion follow from the fact that large numbers of residues can be probed individually in a single experiment. By contrast, many other forms of spectroscopy monitor properties that are averaged over all residues in the molecule or that make use of only one or two reporters. The NMR methodology is not limited to protein folding, and applications to enzymatic catalysis, binding, and molecular recognition are beginning to emerge.  相似文献   

6.
G-triplex (G3) structures formed with three consecutive G-tracts have recently been identified as a new emerging guanine-rich DNA fold. There could likely be a wide range of biological functions for G3s as occurring for G-quadruplex (G4) structures formed with four consecutive G-tracts. However, in comparison to the many reports on G4 nanoassemblies that organize monomers together in a controllable manner, G3-favored nanoassemblies have yet to be explored. In this work, we found that a natural alkaloid of sanguinarine can serve as a dynamic ligand glue to reversibly switch the dimeric nanoassemblies of the thrombin binding aptamer G3 (TBA-G3). The glue planarity was considered to be a crucial factor for realizing this switching. More importantly, external stimuli including pH, sulfite, O2 and H2O2 can be employed as common regulators to easily modulate the glue's adhesivity for constructing and destructing the G3 nanoassemblies as a result of the ligand converting between isoforms. However, this assembly behavior does not occur with the counterpart TBA-G4. Our work demonstrates that higher-order G3 nanoassemblies can be reversibly operated by manipulating ligand adhesivity. This provides an alternative understanding of the unique behavior of guanine-rich sequences and focuses attention on the G3 fold since the nanoassembly event investigated herein might occur in living cells.  相似文献   

7.
The involvement of G-quadruplex (G4) structures in nucleic acids in various molecular processes in cells such as replication, gene-pausing, the expression of crucial cancer-related genes and DNA damage repair is well known. The compounds targeting G4 usually bind directly to the G4 structure, but some ligands can also facilitate the G4 folding of unfolded G-rich sequences and stabilize them even without the presence of monovalent ions such as sodium or potassium. Interestingly, some G4-ligand complexes can show a clear induced CD signal, a feature which is indirect proof of the ligand interaction. Based on the dichroic spectral profile it is not only possible to confirm the presence of a G4 structure but also to determine its topology. In this study we examine the potential of the commercially available Rhodamine 6G (RhG) as a G4 ligand. RhG tends to convert antiparallel G4 structures to parallel forms in a manner similar to that of Thiazole Orange. Our results confirm the very high selectivity of this ligand to the G4 structure. Moreover, the parallel topology of G4 can be verified unambiguously based on the specific induced CD profile of the G4-RhG complex. This feature has been verified on more than 50 different DNA sequences forming various non-canonical structural motifs.  相似文献   

8.
9.
Currently, significant efforts are devoted to designing small molecules able to bind selectively to guanine quadruplexes (G4s). These noncanonical DNA structures are implicated in various important biological processes and have been identified as potential targets for drug development. Previously, a series of triphenylamine (TPA)-based compounds, including macrocyclic polyamines, that displayed high affinity towards G4 DNA were reported. Following this initial work, herein a series of second-generation compounds, in which the central TPA has been functionalised with flexible and adaptive linear polyamines, are presented with the aim of maximising the selectivity towards G4 DNA. The acid–base properties of the new derivatives have been studied by means of potentiometric titrations, UV/Vis and fluorescence emission spectroscopy. The interaction with G4s and duplex DNA has been explored by using FRET melting assays, fluorescence spectroscopy and circular dichroism. Compared with previous TPA derivatives with macrocyclic substituents, the new ligands reported herein retain the G4 affinity, but display two orders of magnitude higher selectivity for G4 versus duplex DNA; this is most likely due to the ability of the linear substituents to embrace the G4 structure.  相似文献   

10.
11.
Previous studies suggest that berberine, an isoquinoline alkaloid, has antiviral potential and is a possible therapeutic candidate against SARS-CoV-2. The molecular underpinnings of its action are still unknown. Potential targets include quadruplexes (G4Q) in the viral genome as they play a key role in modulating the biological activity of viruses. While several DNA-G4Q structures and their binding properties have been elucidated, RNA-G4Qs such as RG-1 of the N-gene of SARS-CoV-2 are less explored. Using biophysical techniques, the berberine binding thermodynamics and the associated conformational and hydration changes of RG-1 could be characterized and compared with human telomeric DNA-G4Q 22AG. Berberine can interact with both quadruplexes. Substantial changes were observed in the interaction of berberine with 22AG and RG-1, which adopt different topologies that can also change upon ligand binding. The strength of interaction and the thermodynamic signatures were found to dependent not only on the initial conformation of the quadruplex, but also on the type of salt present in solution. Since berberine has shown promise as a G-quadruplex stabilizer that can modulate viral gene expression, this study may also contribute to the development of optimized ligands that can discriminate between binding to DNA and RNA G-quadruplexes.  相似文献   

12.
The secondary structure of guanine-rich oligodeoxynucleotides has been investigated with fluorescent probes. Intramolecular folding of a telomeric oligonucleotide into a quadruplex led to fluorescence resonance energy transfer (FRET) between a donor (fluorescein) and an acceptor (tetramethylrhodamine) covalently attached to the 5' and 3' ends of the DNA, respectively. Depending on oligonucleotide length, quenching efficiency varied between 0.45 and 0.72 at 20 degrees C. The conjugation of the dyes to the oligonucleotide had a limited, but significant, influence on the thermodynamics of G-quartet formation. Intramolecular folding was demonstrated from the concentration independence of fluorescence resonance energy transfer over a wide concentration range. Folding of the oligonucleotide was confirmed by UV absorption, UV melting, and circular dichroism experiments. The folding of the G-quartet could be followed at concentrations as low as 100 pM. Fluorescence resonance energy transfer can thus be used to reveal the formation of multistranded DNA structures.  相似文献   

13.
We previously identified quinoline‐based oligoamide helical foldamers and a trimeric macrocycle as selective ligands of DNA quadruplexes. Their helical structures might permit targeting of the backbone loops and grooves of G‐quadruplexes instead of the G‐tetrads. Given the vast array of morphologies G‐quadruplex structures can adopt, this might be a way to achieve sequence selective binding. Here, we describe the design and synthesis of molecules based on macrocyclic and helically folded oligoamides. We tested their ability to interact with the human telomeric G‐quadruplex and an array of promoter G‐quadruplexes by using FRET melting assay and single‐molecule FRET. Our results show that they constitute very potent ligands—comparable to the best so far reported. Their modes of interaction differ from those of traditional tetrad binders, thus opening avenues for the development of molecules specific for certain G‐quadruplex conformations.  相似文献   

14.
G-quadruplexes are four-stranded nucleic acid secondary structures of biological significance and have emerged as an attractive drug target. The G4 formed in the MYC promoter (MycG4) is one of the most studied small-molecule targets, and a model system for parallel structures that are prevalent in promoter DNA G4s and RNA G4s. Molecular docking has become an essential tool in structure-based drug discovery for protein targets, and is also increasingly applied to G4 DNA. However, DNA, and in particular G4, binding sites differ significantly from protein targets. Here we perform the first systematic evaluation of four commonly used docking programs (AutoDock Vina, DOCK 6, Glide, and RxDock) for G4 DNA-ligand binding pose prediction using four small molecules whose complex structures with the MycG4 have been experimentally determined in solution. The results indicate that there are considerable differences in the performance of the docking programs and that DOCK 6 with GB/SA rescoring performs better than the other programs. We found that docking accuracy is mainly limited by the scoring functions. The study shows that current docking programs should be used with caution to predict G4 DNA-small molecule binding modes.  相似文献   

15.
16.
以吡咯、p-甲氧基苯甲醛为原料,丙酸为溶剂,130℃ 条件下制得四(p-甲氧苯基)卟啉(TMOPP);然后在100℃ 微波辐射条件下,以TMOPP和乙酸铜为原料,DMF为溶剂,制得目标化合物四(p-甲氧苯基)卟啉铜(Ⅱ)配合物 (CuTMOPP)。采用电喷雾质谱、紫外光谱和红外光谱等分析方法对所合成的目标化合物进行了表征,目标化合物的理论值和实验值基本一致。进一步采用紫外光谱、CD光谱、FRET熔点实验、PCR-Stop实验考察了目标化合物与c-myc G4 DNA的相互作用,结果表明目标化合物可能与c-myc G4 DNA以静电方式结合,从而抑制其复制,进一步对其生物功能的影响还在研究中。  相似文献   

17.
The Engrailed Homeodomain folds on the microsecond time scale via an intermediate that is experimentally well characterised using structural Engrailed-Homeodomain mimics. Here, we analysed directly the changes in distance between key residues during the kinetics of unfolding and at equilibrium using fluorescence resonance energy transfer (FRET). Trp was the donor and 5-(((acetylamino)ethyl)amino) naphthalene-1-sulphate, the acceptor, substituted in positions that caused little change in stability. Distances calculated for the native state were in good agreement with those derived from the NMR structure. The distances between the N- and C-termini of Helix I and of Helix III increased, then decreased and finally increased again with increasing GdmCl concentration on equilibrium denaturation. This behaviour implied that there was a folding intermediate on the folding pathway and that this intermediate was populated at low concentrations of GdmCl concentration ( approximately 1 M). We analysed the changes in distance during temperature-jump relaxation kinetics, using a qualitative and very conservative procedure that drew conclusions only when changes in fluorescence of mutants containing either the donor or the acceptor alone would not obscure the change in the FRET signal when both donor and acceptor were present. The distance changes obtained under equilibrium and kinetic measurements were self-consistent and also consistent with the known high-resolution structures of the mimics of the folding intermediates. We showed that for analysing distances in disordered ensembles, it is important to use FRET probes with a critical distance close to the average separation in the ensemble. Otherwise, average distances could be over or underestimated.  相似文献   

18.
19.
Förster resonance energy transfer (FRET) provides a powerful tool for monitoring intermolecular interactions and a sensitive technique for studying Å-level protein conformational changes. One system that has particularly benefited from the sensitivity and diversity of FRET measurements is the maturation of the Shigella type III secretion apparatus (T3SA) needle tip complex. The Shigella T3SA delivers effector proteins into intestinal cells to promote bacterial invasion and spread. The T3SA is comprised of a basal body that spans the bacterial envelope and a needle with an exposed tip complex that matures in response to environmental stimuli. FRET measurements demonstrated bile salt binding by the nascent needle tip protein IpaD and also mapped resulting structural changes which led to the recruitment of the translocator IpaB. At the needle tip IpaB acts as a sensor for host cell contact but prior to secretion, it is stored as a heterodimeric complex with the chaperone IpgC. FRET analyses showed that chaperone binding to IpaB’s N-terminal domain causes a conformational change in the latter. These FRET analyses, with other biophysical methods, have been central to understanding T3SA maturation and will be highlighted, focusing on the details of the FRET measurements and the relevance to this particular system.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号