首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用搅拌铸造法制备了不同尺寸的SiCP增强AZ91D镁基复合材料,并对其显微组织和力学性能进行了研究。结果表明,当SiCp加入量为2%,SiC颗粒尺寸为0.5μm时,SiCp/AZ91D镁基复合材料晶粒细小,分布均匀。复合材料的抗拉强度达到150.6 MPa,与AZ91D基体相比提高了57.6%,但伸长率有所降低。  相似文献   

2.
利用化学镀法制备了Cu包覆SiCp,研究了SiCp及Cu-SiCp增强镁基复合材料(SiCp/AZ91D和Cu-SiCp/AZ91D)的性能。采用扫描电镜(SEM)、X射线衍射仪及UTM4304电子万能试验机分析测试了镁基复合材料的组织结构,相组成及力学性能。结果表明,SiC颗粒增强镁基复合材料主要由α-Mg和Mg2Si相组成,SiC镀Cu后能够进一步细化晶粒,同时在Mg2Si相周边出现层片状的α+β相。SiCp/AZ91D和Cu-SiCp/AZ91D复合材料的力学性能显著高于AZ91D基体合金,Cu-SiCp/AZ91D复合材料的的抗拉强度达195.7 MPa。室温拉伸时,AZ91D合金表现为典型的脆性断裂特征,而SiCp/AZ91D和Cu-SiC/AZ91D复合材料表现为韧性断裂及部分准解理断裂。  相似文献   

3.
采用真空压力浸渗装置制备SiCp/AZ91D复合材料。对制备工艺进行了改进,提出了以SiC颗粒覆盖法保护镁合金熔体的措施,可以有效解决熔剂覆盖法易造成的熔剂夹杂问题;在压力0.4MPa、浸渗温度700℃、保压5min的条件下,制备SiC单一颗粒尺寸为5μm、体积分数为44.7%的SiCp/Mg复合材料;并且成功制备32μmSiC单一颗粒体积分数为56.4%的SiCp/AZ91D复合材料。经过光镜、扫描电镜和X射线衍射仪分析表明,采用SiC颗粒覆盖法制备SiCp/AZ91D复合材料组织致密、无明显孔洞及夹杂等铸造缺陷,有新相Mg2Si生成。  相似文献   

4.
以AZ91D镁合金和平均颗粒尺寸为0.5μm的SiC颗粒分别作为基体和增强相,通过全液态搅拌铸造法和挤压铸造法结合制备出SiC颗粒增强镁基复合材料。力学性能测试结果显示:当模具温度为200℃、保压时间为15 s时,SiCp/AZ91D镁基复合材料抗拉强度最高为157 MPa;金相显微组织显示,碳化硅颗粒可作为镁合金凝固时异质形核的中心,也可能会随着凝固时固液界面的推移,使SiC颗粒处于晶界处;存在SiC颗粒团聚现象,这是其抗拉强度降低的原因;SiCp/AZ91D镁基复合材料在室温下拉伸时的断口形貌呈现脆性断裂特征;热处理工艺为固溶处理温度420℃,保温20 h空冷,时效处理温度200℃,保温8 h空冷,经过热处理后,镁基复合材料的抗拉强度均有所提高,最高可提高48.95%。  相似文献   

5.
本文采用半固态搅拌技术制备出了5μm10vol%Grp/AZ91、(5μm5vol%Grp+5μm5vol%SiCp)/AZ91和 (5μm5vol%Grp+10μm5vol%SiCp)/AZ91共3种镁基复合材料,并对其在300℃,0.05mm/s的条件下进行了热挤压,研究了SiCp对挤压态复合材料的显微组织、力学性能和耐磨性能的影响规律。研究结果表明,与Grp/AZ91相比,SiCp的引入导致基体晶粒尺寸增大,引起石墨颗粒碎化;随着SiCp尺寸增加,晶粒尺寸增大,石墨碎化现象更为显著。SiCp的加入提高了Grp/AZ91复合材料的抗拉强度、延伸率和硬度,随着SiCp尺寸增加,力学性能进一步提升。SiCp的引入降低了Grp/AZ91复合材料的磨损率,同时摩擦系数上升,随着SiCp尺寸增加,磨损率进一步下降,摩擦系数进一步上升,磨损机制由剥层磨损转变为磨粒磨损。  相似文献   

6.
采用高能球磨结合机械搅拌的方法制备了纳米SiCp增强AZ91D镁基复合材料。结果表明,加入纳米SiCp能明显细化晶粒,且纳米SiCp均匀分布于合金中。当加入1.5%的纳米SiCp时,合金晶粒细化效果最佳,屈服强度、伸长率、硬度及弯曲强度较AZ91D镁合金分别提高了45.9%、63.4%、24.3%和6.3%。进一步提高纳米SiCp含量,晶粒细化效果降低,力学性能下降。  相似文献   

7.
采用搅拌铸造法制备SiC体积分数为5%、10%和15%的颗粒增强AZ91镁基复合材料(SiCp/AZ91)。复合材料经过T4处理后,于350°C以固定挤压比12:1进行热挤压。在铸态复合材料中,颗粒在晶间微观区域发生偏聚。热挤压基本上消除了这种偏聚并有效地改善颗粒分布。另外,热挤压有效地细化基体的晶粒。结果表明:热挤压明显提高复合材料的力学性能。在挤压态复合材料中,随着SiC颗粒含量的升高,基体的晶粒尺寸减小,强度和弹性模量升高,但是伸长率降低。  相似文献   

8.
采用高能超声分散技术和金属型重力铸造工艺制备了CNTs/AZ91D镁基纳米复合材料,并对复合材料进行了固溶T4热处理和固溶时效T6热处理。T4态1.0CNTs/AZ91D复合材料的抗拉强度、伸长率分别为285 MPa、17.3%,与铸态复合材料的抗拉强度(196MPa)和伸长率(4.1%)相比,分别提高了45%、322%。T6态的抗拉强度进一步提高到296MPa,特别是屈服强度显著提高到155MPa,伸长率有所降低,但仍有5.5%。利用OM、SEM、TEM观察1.0CNTs/AZ91D复合材料的显微组织。结果表明,碳纳米管具有细化晶粒、促进滑移和孪生、载荷转移等作用,从而能够明显提高CNTs/AZ91D复合材料的综合力学性能。  相似文献   

9.
采用搅拌铸造法制备了漂珠粒径为80μm、体积分数为6%的漂珠/AZ91D复合材料。利用分离式Hopkinson压杆(SHPB)装置对漂珠/AZ91D复合材料进行不同高应变率下的压缩试验,分析了复合材料在高应变率条件下的压缩力学性能的变化规律。通过光学显微镜、扫描电镜分析了复合材料的组织和断口显微形貌。结果表明,漂珠/AZ91D复合材料在室温动态压缩下,具有显著的应变率敏感性,其压缩强度随应变率的增加而增大。复合材料中的漂珠具有较好吸能作用,其断口具有明显的脆性断裂特征。  相似文献   

10.
采用熔体搅拌技术制备了SiCp尺寸分别为20μm、20μm+50μm、50μm的10SiCp/6061复合材料,并在100MPa压力下挤压铸造成形,研究了颗粒尺寸对挤压铸造复合材料微观组织和力学性能的影响。结果表明,随着颗粒尺寸增加,10SiCp/6061复合材料的孔隙率不断降低,颗粒分布更加均匀,力学性能均逐渐降低,复合材料断裂模式由韧性断裂向韧脆混合断裂模式转变。  相似文献   

11.
通过扫描电镜、透射电镜、拉伸性能测试等方法,在坯料表面温度为350℃,温度差为150℃进行温差挤压,通过在AZ91复合材料中添加不同含量SiCp来研究其显微组织和力学性能。结果表明,随着SiCp含量的不断增加,复合材料中晶粒更加细小且分布更加均匀。这主要是在挤压下,复合材料中出现非基面滑移和形变孪晶,使组织分布更加均匀。SiCp的加入可以作为晶粒再结晶形核核心,促使再结晶晶粒的形成,晶界处的SiCp可阻碍晶界运动,细化晶粒。在SiCp含量为0.50%时,AZ91复合材料的力学性能最佳,其抗拉强度和屈服强度分别达到315 MPa和209 MPa,伸长率达到10.3%。  相似文献   

12.
为改善消失模铸造AZ91D镁合金的显微组织和力学性能,在合金中加入稀土元素Y和Gd。结果表明:Y和Gd在消失模铸造AZ91D镁合金中生成块状的Al2Y和Al2Gd相,细化基体组织,并使β-Mg17Al12相形貌由网状转变为断续状和颗粒状。Y和Gd的加入提高了消失模铸造AZ91D镁合金中α-Mg的初晶析出温度,降低其共晶温度。适量的Y和Gd能显著提高消失模铸造AZ91D镁合金的力学性能,当Y和Gd的含量分别为0.6%和0.9%时,抗拉强度、伸长率和硬度达到最大,分别为161.68MPa、2.80%、HB64.7,比不加Y和Gd的AZ91D镁合金分别提高了18.8%、54.7%、19.2%。  相似文献   

13.
以平均颗粒尺寸为30nm的Al2O3颗粒作为增强相,采用全液态搅拌铸造法制备了Al2O3/AZ91D复合材料。通过光学显微分析、XRD衍射分析、SEM扫描和EDS能谱分析、硬度测试等检测手段对复合材料的显微组织和性能进行了研究。研究结果表明:由于初生相α-Mg在Al2O3颗粒表面非均质形核及Al2O3颗粒阻碍α-Mg相生长的双重作用使Al2O3/AZ91D复合材料的晶粒得到了明显细化,而且复合材料的硬度明显高于AZ91D合金,并随着Al2O3颗粒加入量的增加,其复合材料的硬度不断提高。  相似文献   

14.
研究了不同热处理工艺对SiCp/AZ81镁基复合材料组织、压缩性能及耐磨性的影响。结果表明,热处理能提高SiCp/AZ81镁基复合材料的耐磨性,其中固溶处理的效果最佳,与铸态的相比较,耐磨性可提高51.8%;时效处理及固溶+时效处理可提高SiCp/AZ81镁基复合材料压缩屈服强度,尤其是时效处理后达到238.7MPa;热处理过程改变β-Mg17Al12相的分布及形状是改善材料耐磨性和压缩屈服强度的主要原因。  相似文献   

15.
为了提高AZ91镁合金的力学性能,特别是屈服强度,制备了不锈钢丝增强AZ91复合材料.在相同条件下,分别对AZ91及其复合材料进行热挤压处理.采用金相显微镜(OM)和扫描电镜(SEM)观察了材料的显微组织,通过拉伸实验测试了材料的室温力学性能.研究结果表明:铸态AZ91与钢丝增强AZ91复合材料力学性能接近,但是,二者经过挤压后,其力学性能均有很大提高.其中钢丝增强AZ91镁合金的屈服强度和抗拉强度分别达到了375MPa和428.6MPa,与挤压态AZ91相比,分别提高了50%和20%,同时复合材料的塑性变形量也有显著的提高.讨论了材料的组织、铸造缺陷等对材料力学性能的影响.  相似文献   

16.
采用熔铸法制备了Al3Tip体积分数分别为4%和8%的AZ91D复合材料,研究了其显微组织和物相,测试了其致密度、硬度及磨损性能。结果表明,复合材料组织致密,原位内生的Al3Ti颗粒尺寸细小,呈球形且在基体中分布较均匀,与基体结合紧密;随Al3Ti体积分数的增加复合材料的致密度降低,硬度升高,但其耐磨性反而有所降低。与基体AZ91D合金相比,Al3Tip/AZ91D基复合材料的硬度和耐磨性均得到明显提高。  相似文献   

17.
采用粉末冶金与热挤压工艺制备了包覆MgO碳纳米管增强的AZ91D基复合材料。研究了包覆MgO的CNTs对复合材料力学性能的影响规律,并利用扫描电镜对CNTs/AZ91D复合材料断口形貌进行了观察和分析。结果表明,包覆MgO后的CNTs对AZ91D镁合金有较强的增强效果,当MgO-CNTs含量为3.0%时,CNTs/AZ91D复合材料抗拉强度、伸长率和显微硬度(HV)都达到最大值,分别为256.7 MPa、12.75%和130.86,比基体合金提高了41.44%、41.67%和22.4%。但是,当MgO-CNTs加入量过多时,会因团聚而影响增强效果,复合材料力学性能下降。  相似文献   

18.
研究了挤压铸造AZ91D镁合金在不同热处理状态下的显微组织、力学性能以及厚度对镁合金试样力学性能的影响。结果表明,挤压铸造AZ91D镁合金铸态显微组织主要由基体α-Mg和在晶内及晶界上分布的β-Mg17Al12相组成,经固溶处理后得到单相α-Mg固溶体组织,而且在α-Mg晶粒内部也出现了少量颗粒状析出物,经固溶时效处理后β-Mg17Al12相再一次在α-Mg晶内和晶界析出,且晶粒变得更加细小;挤压铸造AZ91D镁合金的硬度、屈服强度、抗拉强度随着试样厚度的增加而减小,而伸长率随着试样厚度的增加而增加。  相似文献   

19.
采用金相、X射线衍射、扫描电镜(SEM)、拉伸试验等方法分析和测试了挤压铸造纳米Si C颗粒增强AZ91D镁基复合材料在铸态(F)、固溶态(T4)和人工时效态(T6)下的组织和力学性能。结果表明,固溶处理可使n-Si Cp/AZ91D铸态组织中的β-Mg17Al12共晶相溶入到基体中,形成单一的过饱和α-Mg固溶体,合金抗拉强度和伸长率均有大幅提高,分别达到265 MPa和13.7%;经时效处理后,复合材料的抗拉强度和屈服强度进一步提高,分别为275,145 MPa;SEM结果显示,β-Mg17Al12相主要以连续析出/非连续析出方式分别在晶内及晶界上析出,特别是纳米Si C颗粒分布对二次析出相β-Mg17Al12的形貌、尺寸、分布有一定的影响,使二次析出相变得细小和弥散分布,从而充分发挥了二次析出相的沉淀强化作用;最后对n-Si Cp/AZ91D复合材料不同热处理条件下的断口形貌进行了SEM观察,并且对其断裂方式进行了分析和讨论。  相似文献   

20.
利用Thermecmastor-Z热模机对经过搅熔铸造法-半固态等温热处理法制备的SiCp/AZ61复合材料半固态坯料进行触变压缩实验。重点分析了SiC颗粒体积分数对真实应力和微观组织的影响。研究表明:在压缩变形前后的SiCp/AZ61复合材料中,SiC颗粒增强相主要位于晶粒晶界处;SiC颗粒增强相体积分数越大,SiCp/AZ61复合材料在半固态条件下的真实应力越大、组织颗粒越细小,塑性变形越明显。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号