首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用Gleeble-3500型热模拟机,分析了2219铝合金在变形温度为330~450℃,应变速率为10~(-2)~10 s~(-1),统一压缩变形量为60%的条件下的热变形行为,研究了应变速率和变形温度对流变应力的影响,建立了超大型环形件用2219铝合金热变形时的本构方程和热加工图。结果表明:2219铝合金的流变应力随变形温度的升高和应变速率的降低而降低;基于应变-应变速率补偿模型建立的本构方程可以更好地预测其流变行为,实验值与预测值的相对误差的标准偏差为6. 7%,最大相对误差绝对值为18. 7%;确定了热加工最佳工艺参数区间:应变速率为10~(-2)~1. 2×10~(-2)s~(-1),变形温度为400~430℃。  相似文献   

2.
喷射沉积5A06铝合金热压缩变形的流变应力行为   总被引:4,自引:1,他引:4  
采用Gleeble1500热模拟机对喷射沉积5A06铝合金进行等温热压缩实验,变形温度为300~500℃,应变速率为5×10-4~5×10-1s-1,最大变形程度为50%。结果表明:喷射沉积5A06铝合金热压缩变形流变应力受变形温度和应变速率的强烈影响,可以用Zener-Hollomon参数的双曲正弦函数形式进行描述。在本研究条件下,喷射沉积5A06铝合金热压缩变形时的热变形激活能Q及应力指数n均随着应变的增加而减小。根据Zener-Hollomon本构方程得出的流变应力拟合值与实测值吻合较好。  相似文献   

3.
采用改进的分离式霍普金森压杆,分别对长度为10、16mm的闭孔泡沫铝试件在不同应变率下进行了动态压缩试验,得出了相应的应力-应变曲线,分析了应变率对闭孔泡沫铝的变形、应力以及能量吸收性能的影响.结果表明:在340~1350s-1下,两组试件均未能完全压实,动态压缩应力-应变曲线只存在弹性区和屈服平台区,缺少致密区;闭孔泡沫铝的变形、应力以及能量吸收性能均有明显的应变率效应.  相似文献   

4.
通过拉伸试验、显微组织观察等手段,研究了初始应变速率和变形温度对低温等径角挤压(ECAP)制备的1050铝合金拉伸性能及晶粒大小的影响。结果表明,随初始应变速率的增加,流动应力不断增加;随着变形温度的升高,流动应力不断减小。当初始应变速率为5×10~(-4)s~(-1)、变形温度为400℃时,合金具有最大的伸长率90.4%。当变形温度为400℃,初始应变速率大于或小于5×10~(-4)s~(-1)时,合金的伸长率均逐渐降低。当初始应变速率为5×10~(-4)s~(-1),变形温度大于或小于400℃时,合金的伸长率均逐渐降低。随初始应变速率的降低和变形温度的增加,合金的晶粒尺寸增大明显。  相似文献   

5.
针对高强度高刚性铝合金型材内部质量要求高且难以成形的问题,建立了铝合金型材成形的理论计算和有限元仿真模型。运用数学计算软件Matlab和有限元仿真软件Deform-3D对其成形过程分别进行了计算和仿真,得到了铝合金型材锻造成形过程中的等效应力和应变。结果表明:铝合金型材等效应力和等效应变随着长度和宽度方向距离增加先增加后减小;在锻造过程中其最大等效应力和等效应变逐渐增大。结果能为铝合金型材锻造工艺优化及模具设计提供参考。  相似文献   

6.
用粉末烧结法制备了相对密度为0.2的开孔泡沫纯钛材料,并在室温20~600℃温度范围内,对其压缩性能进行了测试,并从理论上分析了其杨氏模量、弹性极限和屈服强度对温度的相依性.结果表明:该开孔泡沫材料在室温下表现出脆性泡沫材料变形断裂特征;在200℃以及更高温度下,该材料表现出塑性开孔泡沫材料变形特征,其应力-应变曲线分为3个阶段,即弹性阶段,平台阶段和压实阶段.开孔泡沫钛的杨氏模量、弹性极限和屈服强度随着温度的升高而减小,其对温度的相依性可分别表示为:E*=1.5217×109-5.988×105T,σ*ys=85.7-0.095T,σ*ys=99.1-0.16T 7.02×10-5T2.  相似文献   

7.
对7050铝合金进行固溶处理,随后在应变速率为1.0×10-4~1.0×10-1 s-1,温度为420℃及460℃的条件下进行拉伸测试。采用光学显微镜、扫描电镜及背散射技术对变形后的试样进行了检测。结果显示,在应变速率为1.0×10-1 s-1且温度为460℃时,铝合金具有最大的超塑性,伸长率达273%;在此变形条件下,塑性变形过程基本处于稳定状态,应力保持不变。微观组织从粗大晶粒变为双峰结构,并继续转变为接近均匀的细晶粒;随着超塑性应变的增加,动态复原过程从动态再结晶与动态回复转向完全动态再结晶。  相似文献   

8.
基于应变影响的7A09铝合金等温压缩流动应力模型   总被引:1,自引:0,他引:1  
在Gleeble-1500型热模拟压缩机上研究7A09铝合金在温度为633~733 K、应变速率为0.01~10.0s-1、最大变形程度为60%条件下的高温流动行为;基于7A09铝合金高温压缩时的流动应力特征,建立反映应变影响的7A09铝合金流动应力模型.结果表明:随着变形温度的升高和应变速率的降低,合金的流动应力显著降低;当应变超过一定值后,随着应变的增加,高、低应变速率下合金的流动应力变化趋势不同;建立的流动应力模型的计算值与实验值之间的最大误差为7.77%,平均误差为2.69%;与不考虑应变影响的流动应力模型相比,该模型的拟合精度高,能较好地描述7A09铝合金高温变形过程中的流动行为,为铝合金高温变形过程的数值模拟奠定了较好的基础.  相似文献   

9.
开孔泡沫Al-10%Mg合金的动态压缩行为的研究   总被引:2,自引:0,他引:2  
用Hopkinson压杆实验装置对开孔结构的泡沫Al—10%Mg合金进行了动态压缩实验,在应变率为准静态、800s^-1和2000s^-1条件下测量了动态和准静态压缩应力—应变曲线,研究了这种铝合金泡沫的动态压缩行为,并分析了其应变率效应。结果表明:在动态和准静态压缩下,泡沫Al—10%Mg合金的压缩σ—ε曲线均表现出弹性变形段、平缓段和紧实段三阶段特征;泡沫Al—10%Mg合金具有明显的应变率敏感性,随应变速率的提高,相同应变量下的流动应力上升。  相似文献   

10.
LY12超塑性成形有限元分析   总被引:4,自引:0,他引:4  
基于LY12铝合金超塑性材料属性建立了弹-粘塑性本构模型。利用该本构模型并结合最大等效应变速率控制压力变化算法对LY12铝合金板超塑性圆杯成形进行数值模拟,得到圆杯变形过程中的应力应变分布、板料厚度变化及所需成形时间。根据模拟获得的优化压力时间曲线对圆杯进行超塑性气压胀形加载实验,制件厚度分布与模拟结果非常接近。  相似文献   

11.
6082铝合金的高温本构关系   总被引:2,自引:0,他引:2  
韦韡  蒋鹏  曹飞 《塑性工程学报》2013,20(2):100-106
利用Gleeble-3500热模拟机,研究6082铝合金在350℃~500℃、应变速率10-2s-1~5s-1、最大变形程度60%条件下的热压缩变形行为。得到了高温下该铝合金的真应力-应变曲线。分析流变应力与应变速率和变形温度之间的关系,建立了高温热变形的本构关系。推导出包含Arrhenius项的Zener-Hollomon参数所描述的高温流变应力表达式。为减少应变的影响,建立4阶多项式对材料参数进行拟合,得到改进的本构方程,并与实验值进行对比。结果表明,应变速率和变形温度对6082铝合金流变应力有显著影响,流变应力随变形温度的升高而降低,随应变速率的增大而增大。该合金属于正应变速率敏感材料,合金热变形过程受热激活控制,激活能为145.977kJ/mol。  相似文献   

12.
对7075铝合金进行了多向锻造试验以及EBSD检测.基于热模拟试验获得的不同温度下的真应力-应变曲线建立流动应力Arrhenius双曲正弦本构方程模型,用Deform-3D软件对7075铝合金4道次多向锻造过程中锻件的温度场、等效应变、最大主应力进行数值模拟.结果表明,锻件最大晶粒尺寸为20.8 μm,最小的晶粒尺寸为...  相似文献   

13.
在金字塔形栅格材料压缩试验的基础上,研究了其单轴压缩应力-应变曲线、吸能能力和吸能效率.结果表明:金字塔形栅格材料单轴压缩应力-应变曲线呈现线弹性变形阶段、弹塑性阶段、软化阶段、致密化阶段四个阶段;与泡沫铝合金的压缩性能比较,其压缩强度更高,吸能能力更强.  相似文献   

14.
利用Gleeble 3800热模拟试验机研究了挤压态Ti-1300合金管材的高温变形行为,试验温度750~950℃、应变速率0.001~1 s~(-1)、最大变形量70%。结果表明:Ti-1300合金管材高温变形应力先随应变的增大而增加,到达峰值应力后逐渐降低,最后趋于稳态。峰值应力随变形温度的降低和应变速率的升高而升高。根据Arrhenius公式,建立了该合金管材的本构模型:ε觶=2.8437×10~8×[sinh(9.40×10~(-3)σ)]~(2.90958)×exp(-218.586/RT)。计算的流变应力与试验结果符合较好,该模型可为实际生产提供理论指导。  相似文献   

15.
通过恒应变速率超塑性拉伸试验,研究了TC21钛合金在变形温度为1 153~1 193K,应变速率为3.3×10-4~3.3×10-2 s-1条件下的拉伸流变应力行为。计算了TC21钛合金超塑性拉伸变形激活能和相应的应力指数,建立了TC21钛合金应力-应变本构模型,并通过1stopt软件对其进行修正。研究表明,在同一应变速率下,TC21钛合金流变应力随变形温度的升高而减小;在同一变形温度下,流变应力随着应变速率的增大而增大。当应变速率较高,变形温度较低时,动态再结晶为主要软化机制;当应变速率较低,变形温度较高时,加工硬化与软化达到动态平衡,软化机制以动态回复为主;当变形温度为1 153K,应变速率为3.3×10-4 s-1时,TC21钛合金具有较好的超塑性(408.60%);超塑性拉伸变形激活能和应力指数分别为329.20kJ/mol、2.367 7。  相似文献   

16.
利用应力应变曲线、热加工图,结合电子透射电子显微镜和背散射衍射技术研究在变形温度为350~510°C、应变速率为0.001~10 s-1时高钛6061铝合金的热变形行为。结果表明,该合金的热压缩变形流变峰值应力随变形温度的升高和应变速率的降低而降低;在实验参数范围内平均热变形激活能为185 k J/mol;建立了流变应力模型;该合金热变形时主要的软化机制为动态回复;根据材料动态模型获得了高钛6061铝合金的热加工图,最佳的热加工窗口温度为400~440°C,应变速率为0.001~0.1 s~(-1)。  相似文献   

17.
泡沫铝合金动态弹塑性本构关系的研究(英文)   总被引:1,自引:0,他引:1  
提出一个多参数的非线性弹塑性唯象本构模型,该模型能够全面地描述泡沫铝合金的典型三阶段变形特征,即线弹性阶段、应力平台阶段和密实化阶段。考虑到密度(相对密度)是泡沫铝这类多孔材料性能表征的最重要参数,在对泡沫铝合金进行各种应变率下的单向压缩实验基础上,确定模型中的参数与相对密度的函数表达式,从而,该模型能系统地描述相对密度、应变率效应对其动态力学行为的影响。模型预测结果和实验结果的对比验证了该模型的可靠性。研究结果可为吸能缓冲及防护结构的优化设计提供技术参考。  相似文献   

18.
基于“局部-整体”映射思想,考虑映射变量独立于结构尺寸的原则,以夹具释放前的应力为映射参量,发展了一种基于应力-温度等效映射的大尺寸结构搅拌摩擦焊后变形的快速预测方法。该方法可以分析局部结构在夹具释放前的应力分布特征,并将其转换为等效的温度载荷进行映射,进而对整体结构进行非线性屈曲分析以获得焊后变形。对Al6061-T6铝合金板材进行焊接变形预测,发现基于应力-温度等效映射方法的预测结果与试验结果吻合良好,其预测精度与基于应变映射的预测方法相当。对Al6061-T6铝合金加筋板进行焊接变形预测,发现基于应力-温度等效映射方法的预测结果与热弹塑性法的预测结果吻合较好,且优于基于应变映射的预测方法,说明所提出的基于应力-温度等效映射的方法在预测大尺寸复杂结构搅拌摩擦焊后变形方面具有更好的精度。  相似文献   

19.
采用热模拟实验机对5A06铝合金进行了变形温度为300,350,400,450和500℃,应变速率为0. 01,0. 1,1和10 s-1不同热变形条件下的等温压缩实验,分析了变形温度和应变速率对5A06铝合金热变形行为的影响,基于实验数据建立了5A06铝合金的Johnson Cook初始本构模型,并在此模型基础上进行了修正。研究结果表明:5A06铝合金热压缩时的热变形应力与变形温度、应变及应变速率均有关,热变形应力随着应变的增大先快速增大,然后逐步减小直至稳定,随变形温度的升高而降低,随应变速率的增大而增大;与Johnson Cook初始本构模型相比,修正后的本构模型具有更高的预测精度,更能准确地表达5A06铝合金热变形应力与热变形条件之间的关系。  相似文献   

20.
采用有限元软件Deform-3D对7075铝合金室温等通道转角拉伸过程进行了数值模拟,分析了室温条件下金属流动、最大主应力、等效应力以及等效应变的分布规律,揭示了材料的变形机理。利用等通道转角拉伸试验,验证了7075铝合金变形模拟结果的准确性。结果表明:模具出、入口的金属流动速度差使试样在大变形区出现缩颈,试样横截面的断面收缩率为17.97%;内、外模角区域的剪切力分布不均引起横截面呈椭圆形;在金属流动速度差和剪切力分布不均的共同作用下,大变形区出现明显弯曲。变形开始阶段,内、外模角区域的应力状态复杂,同时转角区域所产生的拉应力最大,导致试样在难变形区与大变形区交界处最容易产生裂纹并发生断裂,同时在大变形区靠近内模角的表面容易产生损伤。变形过程中,试样的等效应力和等效应变分布呈现不均匀现象,其横截面表面处的等效应变高于内部的数值,其大变形区等效应变不均匀度系数为0.85,优于同参数的等通道转角挤压的1.46。等通道转角拉伸试验后,试样无明显的飞边与毛刺,横截面的断面收缩率为17.49%,与模拟的结果相吻合。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号