首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 187 毫秒
1.
土样回弹及再压缩变形特征的试验研究   总被引:1,自引:0,他引:1  
通过固结回弹试验对土体的回弹变形规律进行研究,提出回弹比率的概念,更为清晰地反映出了回弹变形随卸荷比变化的发展过程:当卸荷比小于0.4时,土样卸荷产生的回弹量不到总回弹量的10%;而当卸荷比在0.9~1.0之间时,土样卸荷产生的回弹量占到总回弹量的40%~60%。将原有的卸荷比—回弹模量分析方法中的R-Ec与R-lgEc方法相结合应用,得出土体回弹变形发展的3个阶段,为回弹变形的计算提供参考,同时通过对卸荷比—回弹模量关系曲线进行拟合分析,可得到在任一卸荷比下土体的回弹模量。试验结果表明:土体回弹率与固结压力、卸荷比密切相关,反映了土体回弹变形的基本特征;在土样的再压缩过程中,再压缩变形大于回弹变形。结合模型试验实测结果,对土样的再压缩变形进行了研究。  相似文献   

2.
通过改装后的三轴仪进行室内试验,研究武汉地区软黏土在卸荷作用下孔隙水回流的规律。试验结果表明:①软黏土在卸荷作用下存在临界卸荷比R,临界卸荷比R约为0.28和0.91;②当0﹤R﹤0.28和R0.91时,软黏土不发生回弹变形,固结过程中排出的孔隙水不能回流到孔隙中;当R在0.28和0.91之间时,软黏土发生回弹变形,并且在回弹过程中吸水;③孔隙水回流量不大,约占固结作用下孔隙水排出量的10%。  相似文献   

3.
不同卸荷路径下软土变形特性试验研究   总被引:1,自引:0,他引:1  
周秋娟 《工程勘察》2013,(10):17-22
本文通过不同的试验方式对软土进行了不同卸荷路径下的变形特性试验研究。一维压缩回弹试验成果表明,软土的回弹变形随着预压荷载的增大而增大,但与卸荷过程中的卸荷比无关;土样再加荷时的压缩模量小于回弹模量而大于初始压缩模量;得到回弹孔隙比、回弹模量的计算公式,从而计算基坑开挖引起的回弹变形量。三轴卸荷蠕变试验成果表明不同的卸荷路径得到不同性质的蠕变变形;卸荷变形模量随应力路径、时间、荷载的变化而变化。  相似文献   

4.
为了准确描述大型沉井下沉到位前的回弹变形特征,对马鞍山长江大桥南锚沉井底部土体进行了6组压缩回弹的室内试验。借助于K_0试验仪,针对其卸载回弹再压缩的受力特征,分别对静止侧压力系数、回弹比率、回弹率、回弹模量与卸荷比R之间的关系进行回归分析,并与工程实测结果相对比。结果表明,当卸荷比大于极限卸荷比时,K_0值随卸荷比显著增大;当卸荷比大于0.8时,发生的回弹量约占总回弹变形量的60%;在相同卸荷比下,前期固结压力越大的土样,其对应的回弹率越大;随着卸荷比的增加,回弹模量则逐渐减小。对比结果显示,沉井内隔墙明显限制井底的回弹变形,沉井底部断面土体不能视作自由回弹。  相似文献   

5.
《建筑地基基础设计规范》(GB50007—2011)规定采用分层总和法计算地基回弹变形,并给出计算公式。回弹模量的选取和回弹变形计算深度的确定直接影响到计算精度,但是实际应用时很难准确得到计算需要的回弹模量和回弹变形计算深度。通过对不同地区、不同土性的土样的回弹试验结果进行分析发现:土在完全卸荷时的回弹模量Ec0与初始卸荷应力p近似呈线性关系;不同初始卸荷应力下,土的Ec/Ec0-R曲线可以采用对数曲线进行拟合。根据这些规律,提出回弹模量确定方法,按照该方法可得到同一土层不同初始卸荷应力p、不同卸荷比R对应的回弹模量Ec,并对土的回弹试验方法和数量提出建议。此方法解决了采用地基规范方法计算回弹变形时的回弹模量取值的问题。回弹变形计算深度的确定可以采用地基规范规定的应变比方法。对于基底以下土层较均匀时,提出可采用应力比的方法确定回弹变形计算深度,采用卸荷比R为0.4作为确定回弹变形计算深度的标准,提出均质土地基回弹变形计算深度系数表。通过算例证明:对于均质土地基,采用该方法确定的地基回弹变形计算深度与应变比方法得到的计算深度基本一致。  相似文献   

6.
为研究轴向卸荷路径下的土体回弹变形特性以及初始含水率和蒙脱石粉含量等指标的影响,以合肥膨胀土为研究对象,开展了一系列的室内一维压缩回弹试验。试验结果表明:卸荷时合肥膨胀土样的e-p曲线具有明显的先缓后陡特征;每级卸荷量越大,膨胀土产生的回弹变形量也就越大;与其他土质相比,合肥膨胀土的一维压缩回弹变形偏低;最大轴向荷载、卸荷比等指标与回弹变形指标之间具有良好的拟合函数关系;相同卸荷比条件下,试样回弹变形量随初始含水率增高而相应增大;当初始含水率较低时,试样的非饱和吸力会抑制土样的回弹变形;蒙脱石粉含量与试样的一维压缩回弹变形之间具有很好的正相关性。这表明膨胀土的胀缩性会影响到膨胀土基坑坑底土体产生的回弹变形量。  相似文献   

7.
《建筑地基基础设计规范》(GB50007—2011)规定采用分层总和法计算地基回弹变形,并给出计算公式。回弹模量的选取和回弹变形计算深度的确定直接影响到计算精度,但是实际应用时很难准确得到计算需要的回弹模量和回弹变形计算深度。通过对不同地区、不同土性的土样的回弹试验结果进行分析发现:土在完全卸荷时的回弹模量E_(c0)与初始卸荷应力p近似呈线性关系;不同初始卸荷应力下,土的E_c/E_(c0)-R曲线可以采用对数曲线进行拟合。根据这些规律,提出回弹模量确定方法,按照该方法可得到同一土层不同初始卸荷应力p、不同卸荷比R对应的回弹模量E_c,并对土的回弹试验方法和数量提出建议。此方法解决了采用地基规范方法计算回弹变形时的回弹模量取值的问题。回弹变形计算深度的确定可以采用地基规范规定的应变比方法。对于基底以下土层较均匀时,提出可采用应力比的方法确定回弹变形计算深度,采用卸荷比R为0.4作为确定回弹变形计算深度的标准,提出均质土地基回弹变形计算深度系数表。通过算例证明:对于均质土地基,采用该方法确定的地基回弹变形计算深度与应变比方法得到的计算深度基本一致。  相似文献   

8.
针对乌东德水电站地下厂房尾水洞薄层大理岩化白云岩进行原位真三轴试验,研究工程岩体卸荷条件下的变形和强度特性。试样为方柱体,长50 cm、宽50 cm、高100 cm,包含20~30条层面,制备时预加压力以减小卸荷松弛。先实施地应力水平下的变形试验,然后模拟洞室开挖时围岩应力调整情况,先加载轴向压力、然后卸载垂直层面方向的围压至试样破坏。试验结果表明:(1)变形具有正交各向异性。垂直层面方向变形模量与平行层面方向变形模量的比值为0.34~0.69。平行层面加载时层面张开,侧胀系数为0.52,反之,垂直层面加载时层面压密,侧胀系数为0.25;(2)塑性变形较大。在一个加卸荷循环中,卸荷残余变形与加载变形的比值为0.4~0.8;(3)加载变形模量与侧压正相关,垂直层面方向的卸荷回弹模量与侧压负相关;(4)卸荷变形具有非线性,卸荷回弹模量与卸荷应力差的相关关系可用负指数式描述;(5)垂直层面方向应力卸荷时,试样破坏型式为沿层面的剪切破坏,体积变形未经历压缩,而是持续、加速扩容;(6)基于沿层面剪切破坏的破坏模式,得到层面Mohr-Coulomb强度参数;视试样为均质岩体,得到岩体Mohr-Coulomb强度参数和Drucker-Prager强度参数。分析各类强度参数的适用性。  相似文献   

9.
基于大变形理论和离心模型试验对上海临港新城地区冲填土自重固结沉降进行分析研究。研究结果表明:大变形理论计算和离心模型试验所得冲填土自重固结沉降量及最终固结时间基本一致,但在未完成固结之前,对于相同的固结度,理论计算的固结时间均明显大于试验所得时间;冲填土的自重固结过程包括快速和缓慢固结2个阶段,快速固结阶段大约需要1 a时间;在快速固结开始阶段,沉降很快,0.5 a的固结度可达50%,快速固结阶段的沉降量占最终沉降的80%,而缓慢固结阶段的沉降量只占最终沉降量的20%。通过对试验数据回归分析,得出冲填土的自重固结沉降与时间的关系式,利用该式可对冲填土地区沉降变形进行预测。  相似文献   

10.
车辆荷载作用下冲填土的孔压发展试验研究   总被引:1,自引:1,他引:0  
以上海临港新城冲填土地层分布区的道路在车辆振动荷载作用下路基变形、破坏时孔隙水压力发展规律为研究对象,以不同的振动频率和动应力来模拟车辆振动荷载,进行了振动三轴试验研究,试验结果表明:在相同固结比,不同振动频率和振幅情况下,孔隙水压力随着振动次数的增加而增大,在开始振动的前一段时间,孔隙水压力增加较快,但当振动次数比达到0.2以后,孔隙水压力增加比前一段时慢,但会一直持续增加,直到液化破坏.冲填土在低频率和高频率车辆振动荷载作用下隙水压力的发展模式不同,低频率下孔隙水压力的发展规律可以用多项式进行模拟;高频率下孔隙水压力的发展规律可以用幂指数模型进行模拟.本研究成果为上海临港新城冲填土地层分布区的道路路基的设计、施工以及防止工程地质灾害的发生提供了有价值的参考.  相似文献   

11.
青岛滨海公路吹填地基的固结特性分析   总被引:2,自引:2,他引:0  
以青岛滨海公路试验段海相吹填软土地基的特点,分析了其固结特性.采用考虑荷载逐渐增加的固结理论,结合吹填土的应力和边界条件.探讨了吹填土的固结规律和孔隙水压力消散的计算方法,并分析了吹填土不同施工时间的沉降过程曲线,得出有益的结论,为青岛滨海公路进一步选择软基处理方案提供了参考.  相似文献   

12.
深部岩石所处的不同初始卸荷水平状态及水压环境对其力学特性影响明显,基于对砂岩进行常规三轴加载试验、不同初始卸荷水平及水压条件的卸荷试验,研究了卸荷条件下砂岩的极限强度、变形特征、变形损伤以及卸荷抗剪强度。研究结果表明:初始卸荷水平n一定时,随着水压p的增加,卸荷极限强度的降低呈现先快后慢的规律,岩样更容易发生破坏,脆性特征更明显,损伤变量ω也呈增加趋势;当水压p一定时,随着n的增大,卸荷极限强度线性增大,统一围压降参数η线性降低,损伤变量ω也减少,且n从0.9到1.0的过程中,ω降低更明显。综合初始卸荷水平n和水压p的影响,对摩擦角和黏聚力进行了二元函数拟合,利用该拟合公式可以预测不同n,p条件下的黏聚力和摩擦角,具有一定工程意义。并基于对试验数据的拟合,对不同n,p作用下的砂岩Mohr–Coulomb准则表达式进行了修正。  相似文献   

13.
为了研究吹填软土在侧向变形条件下的力学与结构特性,利用真三轴试验机以及WF应力路径试验仪进行了不排水条件下的侧向卸荷试验,并与常规三轴试验结果进行了对比分析。试验结果表明:与常规三轴剪切试验应力应变关系曲线表现的硬化特性不同,真三轴卸荷试验表现出应变软化现象。随着初始围压的增大,土体由剪缩向剪胀变化。由于中主应力的影响,真三轴卸荷状态下土体的结构屈服应力值明显大于WF卸荷状态以及常规三轴试验下的数值,其随着中主应力系数bd的增大而成非线性增长。真三轴侧向卸荷条件下土体抗剪强度指标大于WF卸荷条件,与常规三轴试验结果也明显不同,其内摩擦角增大,粘聚力减小。  相似文献   

14.
考虑超静孔隙水压作用的软土卸荷力学特性对富水软土地区地下空间开挖变形和稳定性分析具有重要作用。以深圳地区淤泥质软土为研究对象,开展不同初始超静孔隙水压作用下的K_0固结不排水三轴卸荷强度试验和卸荷蠕变试验。试验结果表明:初始超静孔隙水压越大,固结围压越小,软土卸荷破坏越具有突然性;软土卸荷强度应力-应变曲线大致呈双曲线型,其双曲线函数拟合结果表明,卸荷强度随着初始超静孔隙水压的增大而大致线性减小。卸荷蠕变对初始超静孔隙水压敏感性很大,卸荷蠕变破坏时的偏应力约为卸荷强度试验中偏应力的90%。UU0.5应力路径相对于UU0.0应力路径更容易发生卸荷强度破坏和卸荷蠕变破坏,在实际工程中,应尽可能控制软土侧向卸荷比和超静孔隙水压的大小。  相似文献   

15.
为了研究卸荷速率和孔隙水压力对砂岩卸荷力学特性的影响,设计进行了不同卸荷速率(0.005,0.02,0.05,0.1 MPa/s)和不同孔隙水压力(0,0.3,0.6,0.9,1.2 MPa)下的三轴卸荷试验。研究结果表明:(1)在加载阶段,随着孔隙水压力的增大,岩样的应力–应变曲线斜率逐渐降低;(2)在围压卸载阶段,卸荷速率越大,卸载阶段的应变围压柔量越小,岩样破坏时的围压越小,岩样强度相对较高,但破碎程度更严重,而且,在相同的卸荷速率情况下,孔隙水压力越大,岩样侧向扩容现象越明显,岩样越容易破坏;(3)在围压卸载阶段,岩样的变形模量出现了先缓后陡的劣化趋势,而且,卸荷速率越小、孔隙水压力越大,变形模量劣化幅度越大;(4)卸载过程中,卸荷速率越大,岩样脆性破坏特征越明显;孔隙水压力越大,岩样破坏时的近轴向的张性裂纹越多和追踪次生裂纹越多,孔隙水压力在岩样内部裂纹、裂隙尖端的应力集中是导致岩石变形破坏的主要原因。  相似文献   

16.
软土卸荷时效性及其孔隙水压力变化试验研究   总被引:2,自引:1,他引:1  
 采用英国GDS公司生产的STDTTS+UNSAT(7 kN/1 700 kPa)型号三轴测试系统,对上海淤泥质软土进行一系列室内试验研究,系统地探讨基坑不同区域的卸荷时效性特性及其孔压变化规律。试验结果表明,软土卸荷后蠕变可出现3个阶段:衰减蠕变、等速蠕变、加速蠕变。当应力水平较低时,蠕变曲线只出现蠕变的第1阶段;当卸荷应力水平增大到一定值时,蠕变曲线出现第1,2阶段;当应力水平较高时,变形急剧增加,土样很快就出现破坏。但不会出现从蠕变的第2阶段(等速蠕变阶段)直接过渡到蠕变第3阶段(加速蠕变阶段)的情况。孔压系数随时间而变化,并不是常数。卸荷时基坑不同区域孔压均减小,然后在不排水蠕变阶段逐渐增加到最大值,此时基坑安全系数达到最小。  相似文献   

17.
循环流动特性是剪胀性砂土液化变形的典型特征,为研究液化循环流动土体的动力剪切特性,在骨架相对密实度分别为35%、50%和80%的砂土中添加不同含量的细颗粒,以改变液化流动土体的重度,通过循环扭剪试验研究不同骨架密度、具有不同细粒含量的液化流动土体在大变形阶段的剪切模量及阻尼比的变化规律。试验结果表明:液化循环流动土体在流动大变形阶段仍具有一定的模量,模量随着应变的增大而逐渐减小;流动变形阶段的模量大小与液化土体的重度基本无关;强度恢复阶段模量与细粒含量及骨架相对密实度密切相关;液化大变形阶段卸载模量趋于稳定,其稳定值约为初始卸载模量的35%;阻尼比随剪应变的增大而先增大,当土体达到初始液化以后,阻尼比随剪应变的发展呈减小的变化趋势;对于相同骨架密度的土体,相变角随着细粒含量的增加而减小,临界状态线的斜率随着细粒含量的而增加而增大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号