首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了开发绿色环保的热镀锌钢板钝化工艺,将γ-(2,3-环氧丙氧)丙基三甲氧基硅烷(KH560)和γ-甲基丙烯酰氧基丙基三甲氧基硅烷(KH570)复合,再添加30%双氧水改性的氟钛酸制成复合钝化液对镀锌钢板钝化,并制备了有机硅烷钝化膜以比较。通过红外光谱分析膜层的分子结构,并用电化学Tafel极化曲线、交流阻抗谱(EIS)、中性盐雾试验、盐水浸泡试验等测定了膜层的耐蚀性能。结果表明:与有机硅烷膜相比,有机硅烷-氟钛酸复合膜具有更好的致密性和耐腐蚀性,经72 h盐雾试验出现白锈面积仅为8%。  相似文献   

2.
碳钢常规铈盐钝化膜的耐蚀性不够理想。以硝酸铈和过氧化氢配制钝化液,通过化学浸泡处理,在Q235碳钢表面制备铈盐钝化膜;通过KH-560硅烷偶联剂对铈盐钝化件进行二次封孔处理,制备了铈盐-硅烷复合钝化膜;对2种钝化膜试样进行了NSS,EIS,SEM和EDS测试。试验结果显示,铈盐钝化膜明显提高了基材的耐蚀性能,但是钝化膜表面存在一些微孔和裂缝,对其耐蚀性能造成不利影响;而硅烷膜能够完整覆盖和填充铈盐钝化膜表面的缝隙和微孔,改善了铈盐钝化膜的耐蚀性能。  相似文献   

3.
为了提高镀锌钢的耐蚀性,先用植酸进行钝化,再用硅烷进行钝化,形成复合钝化膜。通过硫酸铜点滴、碱浸失重和EIS阻抗法研究了复合钝化膜的耐蚀性及其耐蚀机理;通过红外光谱及SEM分析了复合钝化膜的形貌及结构。结果表明:复合钝化膜有更好的耐蚀性,碱浸失重速率低于单一钝化膜,自腐蚀电流密度下降2个数量级,达到3.142×10-8A/cm2;复合钝化膜结构紧密,抑制了电子与Zn2+在金属界面与腐蚀介质间的扩散和转移,阻碍了电化学腐蚀中的阴极还原反应,降低了镀锌层的腐蚀速率。  相似文献   

4.
为了进一步提高镀锡钢板的耐蚀性,以正硅酸四乙酯(TEOS)和四丙氧基硅烷(TPOS)为无机硅前驱体,分别与乙烯基三乙氧基硅烷(A151)交联,在镀锌钢板表面制得无机硅/有机硅烷复合钝化膜。采用电化学极化曲线及交流阻抗(EIS)谱、中性盐雾试验、抗硫性试验、附着力试验、原子力显微镜(AFM)等研究了2种复合钝化膜的耐蚀性、抗硫变性、附着力及形貌。结果表明:以四丙氧基硅烷为前驱体的无机硅/有机硅烷复合转化膜具有更好的耐腐蚀性能、附着力、表面形貌及抗硫性,2 h中性盐雾腐蚀后其表面未出现任何锈斑。  相似文献   

5.
为了研制热浸锌层表面高耐蚀、绿色环保的无铬钝化工艺,对热浸锌板进行植酸钝化、硅烷钝化和植酸/硅烷两步复合钝化。采用正交试验和单因素试验对复合钝化工艺进行了优化;采用Tafel曲线、盐雾试验及硫酸铜点滴试验分析复合钝化膜的耐蚀性能,利用场发射扫描电镜(FESEM)观察了钝化膜的表面形貌,通过EDS分析钝化膜的成分,并提出复合钝化膜的结构模型。结果表明:植酸膜与硅烷膜通过"交联-协同作用"在热浸锌表面形成一层致密的保护膜层,较单一钝化膜更致密,耐蚀性能与三价铬钝化膜相当;经植酸/硅烷复合钝化处理后,锌表面生成的钝化膜层阻碍O_2和电子在锌表面和溶液之间的转移和传递,改变了界面反应历程,从而提高了阴极极化,改善了复合钝化膜的耐腐蚀性能。  相似文献   

6.
为了提高丙烯酸树脂类钝化膜的耐蚀性能,以三甲基氯硅烷对纳米SiO2进行表面改性,制成分散液后与硅烷偶联剂KH-563、丙烯酸树脂及无机盐Ni(CH3COO)2等复配成无铬钝化液,对热镀锌板进行复合钝化。采用红外光谱测试了改性纳米SiO2的结构,采用粒度仪分析其粒径;利用扫描电镜和能谱分析了复合钝化膜的微观形貌和成分;采用电化学及中性盐雾试验分析了复合钝化膜的耐蚀性能。结果表明:纳米SiO2改性后,表面能降低,分散性良好;改性纳米SiO2与丙烯酸树脂发生交联作用,形成了网状结构,提高了复合钝化膜的致密性;复合钝化耐蚀性能较丙烯酸树脂钝化膜及热镀锌板显著提高。  相似文献   

7.
对镀锌钢板进行混合稀土和三聚磷酸盐的协同钝化,通过中性盐雾试验、3%CuSO4点滴试验和电化学测试研究了稀土与三聚磷酸盐复合钝化膜的耐蚀性能。结果显示:稀土与三聚磷酸盐复合钝化膜明显提高了镀锌层的自腐蚀电位,大大提高了镀锌钢板的防护性能,且其耐蚀性明显优于低铬酸盐钝化膜。  相似文献   

8.
为加强环保,进一步提高镀锌钢彩色钝化膜的耐蚀性能,采用硅酸盐和有机酸单宁酸对镀锌钢板表面进行复合钝化,采用醋酸铅点滴试验和中性盐雾试验研究了钝化膜的耐蚀性能,并对复合钝化液的组分及工艺条件进行优选。结果表明:优选工艺为35 g/L Na2SiO3,10 mL/L H2O2(30%),5 mL/L H2SO4(98%),2 g/L CuSO4,5 g/L单宁酸,10 g/L NaNO3,pH值为2.0,温度为50℃,钝化时间30 s,钝化封闭后于60~70℃老化5~10 min;钝化膜外观为均匀彩色,与基体附着力良好,耐醋酸铅点滴腐蚀时间为79 s,耐中性盐雾腐蚀时间达128 h,其耐蚀性能虽不及六价铬钝化膜,但优于三价铬钝化膜。  相似文献   

9.
镀锌层表面KH-560硅烷膜耐蚀性能研究   总被引:1,自引:0,他引:1  
利用正交实验研究了硅烷偶联剂在镀锌板上的钝化工艺,采用KH-560对热镀锌板进行钝化处理.比较钝化膜与空白试样在5%NaCl溶液中的极化曲线、电化学交流阻抗谱,并通过盐水浸泡实验进一步验证了硅烷膜的耐蚀性能.结果表明:经硅烷钝化处理后的镀锌板,其腐蚀电流密度下降,极化电阻升高,硅烷膜抑制了镀锌板的腐蚀过程,其耐蚀性能优于空白试样,接近铬酸盐钝化膜的耐蚀性.  相似文献   

10.
为了提高无铬钝化膜的性能,对A3钢镀锌后,以混合稀土与三聚磷酸盐为钝化液进行复合钝化,通过中性盐雾、盐水浸泡法考察了复合钝化膜的耐腐蚀性能,分析了其成膜机理;通过X射线光电子能谱测试了复合钝化膜的组成元素。结果表明:复合钝化膜能够有效地提高镀锌层的耐腐蚀性能,且耐腐蚀性能优于低铬酸钝化膜;复合钝化膜主要由稀土元素,P,O组成,其主要组成物为稀土硫酸盐、稀土多磷酸盐。  相似文献   

11.
张曌  范云鹰 《材料保护》2022,55(1):178-186
基于镀锌层表面无铬钝化技术,从钝化膜性质、钝化液稳定性和成膜耐蚀机理3大方面,总结了以硅酸盐、钼酸盐、钛盐以及稀土金属盐为主要成膜物质的4种复合钝化体系的优缺点,认为耐蚀性最优的体系为硅酸盐体系;对比了各体系钝化液稳定性的差异及不同影响因素,总结了不同体系的相应改善方法,认为硅酸盐体系稳定性最好.阐明了硅酸盐、钼酸盐和...  相似文献   

12.
镀锌板水性环氧树脂复合钝化膜的耐蚀性能   总被引:2,自引:0,他引:2  
镀锌板经环氧树脂系有机/无机复合钝化处理后耐蚀性能大幅提高,目前对其研究不够深入。将水性环氧树脂、Ni(NO3)2.6H2O,H2O2及有机酸等配制成复合钝化液,在镀锌板表面制备了有机/无机复合钝化膜。采用Tafel极化曲线、交流阻抗(EIS)和中性盐雾试验(NSS)等方法对单一环氧树脂钝化膜和复合钝化膜的耐蚀性进行了对比研究,采用扫描电镜(SEM)和能谱分析(EDS)对复合钝化膜的表面形貌和组成进行了分析。结果表明:无机盐﹑有机酸与环氧树脂在镀锌板表面形成的有机/无机协同缓蚀复合膜具有优良的耐蚀性和较好的工业实用推广价值。  相似文献   

13.
目前对黄铜表面处理时采用复合纳米硅烷膜技术的研究报道不多。在黄铜表面采用浸涂技术制备γ-巯丙基三甲氧基硅烷膜,运用电化学方法研究复合纳米硅烷膜在3.50%氯化钠溶液中的耐蚀性,并用SEM表征复合纳米硅烷膜黄铜腐蚀前后的形貌。结果表明:添加纳米材料复合纳米硅烷膜的黄铜在3.50%的氯化钠溶液中具有很强的耐蚀性,其自腐蚀电流密度下降至3.576×10~(-9)A/cm~2,自腐蚀电位正移。添加纳米材料的复合纳米硅烷膜在腐蚀前后的形貌基本不变,耐蚀性明显优于未添加纳米材料的纯硅烷膜。  相似文献   

14.
锌镍合金钝化膜的性能   总被引:2,自引:0,他引:2  
研究了锌镍合金钝化液组成及钝化处理工艺,通过对钝化液成分进行分析和钝化工艺的试验研究,采用能谱分析法和弱极化电流密度腐蚀试验方法对锌镍合金钝化膜性能进行了检测。试验结果表明:本钝化液配方在pH值1.00-1.45、钝化温度35-55℃、钝化液Zn^2 ≤1.5g/L条件下,镍含量为6%-17%的锌镍合金镀层可以获得优良的Zn-Ni-Cr钝化膜,钝化的锌镍合金镀层耐腐蚀性能是电镀锌层、热镀锌层的4倍以上。  相似文献   

15.
热镀锌钢板表面氨基硅烷膜的制备及其耐腐蚀性能   总被引:1,自引:0,他引:1  
为了减少金属材料硅烷化处理时挥发性有机物的排放,采用水溶性氨丙基三乙氧基硅烷(γ-APS)处理液在热镀锌钢板表面沉积了γ-APS膜.以NaCl溶液浸泡失重、塔菲尔极化曲线和电化学阻抗谱测技术,研究了γ-APS膜的耐蚀性能;通过傅立叶红外反射光谱(FTIR)和X射线光电子能谱(XPS)对γ-APS膜的化学组成、结构及形貌...  相似文献   

16.
镀锌层三价铬钝化膜的制备工艺及性能研究   总被引:1,自引:0,他引:1  
郭晓斐  王玥  孙华  王璐  修先文 《材料保护》2012,45(2):35-37,48,85
为了提高镀锌钢板的耐蚀性,采用三价铬钝化液对镀锌层进行了钝化处理。研究了钝化工艺参数对钝化膜外观和耐蚀性的影响,确定了三价铬钝化最佳工艺。测试表明:制备的钝化膜的耐蚀性与六价铬钝化膜相当。通过SEM,EDS,XRD和极化曲线分析了膜层的形貌、成分及耐腐蚀性能。结果显示,钝化膜主要含有ZnO,FeCr,ZnCrxOy等物质,这些物质构成了平整致密的膜层保护金属基体,从而提高了金属的耐蚀性。  相似文献   

17.
18.
为进一步提高三价铬彩色钝化膜的性能,在无机钝化液中加入有机硅树脂,制备了一种新型高耐蚀性能三价铬彩色钝化液。该钝化液可以在镀锌板表面形成有机-无机复合钝化膜,通过红外光谱仪分析钝化膜结构,采用扫描电镜观察钝化膜微观形貌,用能谱仪分析钝化膜的微观组成,采用电化学试验、中性盐雾试验对钝化膜耐蚀性能进行表征。以正交试验对三价铬彩色钝化液组分进行了优选,以单因素试验研究了钝化温度、钝化液pH值、钝化时间等钝化条件对钝化膜耐腐蚀性能的影响。结果表明:最佳钝化液成分为硫酸铬10.00 g/L,硅树脂12.50 g/L,硝酸钠4.00 g/L,硝酸镍1.25 g/L,氯化钠2.00 g/L;最佳钝化条件为温度30℃,时间150 s,pH值1.8;以最优条件制得的钝化膜色彩鲜艳,耐蚀性能突出,耐中性盐雾腐蚀时间达196 h。  相似文献   

19.
LY12铝合金表面有机-无机杂化膜的防腐性能研究   总被引:8,自引:0,他引:8  
以乙烯基三甲氧基硅烷(VMS)、γ-(甲基丙烯酰氧)丙基三甲氧基硅烷(MPMS)和γ-环氧丙基醚基三甲氧基硅烷(GPMS)三种硅烷偶联剂为前驱体,制备了正硅酸乙酯(TEOS)改性的有机-无机杂化膜.采用动电位极化曲线测试了膜层的防腐性能,考察了TEOS含量对其的影响.以腐蚀电流为指标,比较了三种体系杂化膜的防腐能力.利用盐雾试验和电子扫描照片研究了杂化膜耐长久腐蚀行为.结果表明,杂化膜的存在有效地抑制了腐蚀反应的发生,VMS和MPMS膜层可使腐蚀电流减小300多倍.当TEOS含量为15%~20%(质量分数,下同)时,膜层的腐蚀电流最小.比较而言,VMS-TEOS膜层的耐蚀能力最强,GPMS-TEOS膜层最差.VMS膜层和VMS 20%TEOS膜层耐盐雾腐蚀的能力最强,总体来说,杂化膜耐长久腐蚀的能力较差.  相似文献   

20.
张曌  范云鹰 《材料保护》2022,(5):134-141+155
基于镀锌层表面无铬钝化技术,从钝化膜性质、钝化液稳定性和成膜耐蚀机理3大方面,总结了以硅烷、单宁酸和植酸为主要成膜物质的3种有机为主的复合钝化体系的优缺点。结果得出耐蚀性最优的体系为硅烷体系,且硅烷体系稳定性最好。单宁酸、植酸体系都能通过不同复配方法得到较丰富的颜色,但表面状态差。单宁酸和植酸体系耐蚀机理类似,钝化液环境导致单宁酸或植酸与Zn2+反应生成配合物并形成螯环附着于基体表面,而硅烷可以分别与有机缓蚀剂、无机复配离子反应,形成Si-O-M共价键。列举了各体系的最佳配伍原则。通过综合对比得到硅烷体系作为主要成膜物质应用前景较好,其膜层耐蚀性优良、膜层结构最稳定、表面状态的缺陷最少,可与多种类型的缓蚀剂有协同缓蚀作用,得到的膜层具有良好的耐蚀性和自修复性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号