共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
AM60B镁合金微弧氧化膜层的结构与性能研究 总被引:3,自引:0,他引:3
为了提高镁合金的耐腐蚀性能,用微弧氧化方法在AM60B镁合金表面生成了氧化物膜层.利用扫描电镜、X射线衍射分析了膜层的形貌、结构和组成.研究表明,氧化膜可分为两层,外层疏松多孔,内层结构致密,膜层主要由MgO、Mg2SiO4和少量MgAl2O4相组成,从外层到内层,Mg2SiO4相含量减少,MgO相含量增大.与镁合金基体相比,氧化物膜层表面硬度提高7~8倍. 在质量分数为3.5%NaCl溶液中的动电位极化测试表明,微弧氧化处理使镁合金的耐蚀性能得到了明显提高. 相似文献
4.
针对ZM6铸造镁合金,为获得综合性能优异的陶瓷膜层,在硅酸钠和氢氧化钠的碱性溶液中,用双向脉冲电源进行微弧氧化处理。采用环境扫描电镜(SEM)、X射线衍射(XRD)研究陶瓷膜层微观形貌及组成,采用拉伸法、中性盐雾试验、轴向加载疲劳试验等方法研究附着力、耐蚀性及疲劳性能等。结果表明:陶瓷膜层大致由表层疏松层、中间致密层以及内部过渡层组成,表层疏松多孔,过渡层与基体紧密结合。陶瓷层与基体结合好,附着力大于50MPa;微弧氧化处理后,大幅度提高合金耐腐蚀性能,中性盐雾大于336h;陶瓷膜层使基体疲劳性能降低18%。 相似文献
5.
镁合金微弧氧化膜的微观结构及耐蚀性研究 总被引:30,自引:4,他引:30
通过自主研究的微弧氧化工艺在AZ9lD镁合金表面获得了表面质量良好的彩色陶瓷质氧化膜。利用EPMA-EDS、XRD等表面分析手段,研究了微弧氧化膜层的截面形貌和相结构,并采用NaCl溶液浸泡试验和中性盐雾试验考察了氧化膜的耐腐蚀性能。结果显示,氧化膜分成内外两层,外层为尖晶石型的Mg、Al的硅氧化合物陶瓷膜,具有坚硬的特点;内层为含少量硅的Mg、Al复合氧化物,与基体结合牢固,结构致密,形成了硬度和韧性的良好组合。氧化膜具有极佳的耐蚀性,性能优于铬酸盐阳极氧化膜。 相似文献
6.
7.
目前,对镁合金表面恒功率微弧氧化的研究尚不够深入。在Na2Si O3-Na OH体系中,通过恒功率控制微弧氧化,在AZ91D镁合金表面获得了微弧氧化膜。分别利用SEM,EDS,XRD,硫酸铜点滴及Na Cl浸泡腐蚀等方法分析了微弧氧化膜的形貌、成分、结构及耐蚀性能。结果表明:恒功率制备的微弧氧化膜由Mg,O,Si,Al元素组成,其物相主要由Mg,Mg O,Mg2Si O4组成;在1~3 k W功率内,随着功率的增加,膜层表面微孔数量减少,孔径增大,在含Cl-溶液中的耐腐蚀性能变差;与恒压控制相比,恒功率控制使得镁合金微弧氧化初期在大电流下起弧,而后期是在高电压环境下进行,导致所形成的微弧氧化膜具有较少的微孔,但具有较大的孔径和较快的生长速度。 相似文献
8.
镁合金无铬微弧氧化新工艺 总被引:3,自引:0,他引:3
利用正交试验对MB2镁合金无铬、磷、镁微弧氧化成膜工艺进行了研究,同时利用表面分析技术,分析了氧化膜层的显微硬度、截面形貌和相结构,采用动电位扫描法考察了氧化膜的耐腐蚀性能.研究的最佳工艺条件为:30 g/L KOH,45g/L Al(OH)3,2 g/L K2SiO3,2g/L添加剂M,电流密度65 mA/cm2,温度45℃.该微弧氧化新工艺能在镁合金上形成银灰色的氧化膜层,其显微硬度值及耐腐蚀性远优于传统含铬工艺DOW17所形成的膜层;微弧氧化膜主要由MgO,MgAl2O4,Al2O3组成,具有多孔结构,孔径较为均匀,分为内外两层,外层为疏松层,内层为与基体结合牢固的致密层;在成膜过程中,电解液的铝盐浓度和微弧氧化电流密度是影响性能的主要因素. 相似文献
9.
10.
电压对镁合金微弧氧化膜组织及耐蚀性的影响 总被引:12,自引:4,他引:12
由于镁合金耐蚀性差,其应用受到了限制.采用 SEM-EDS,XRD等表面分析技术研究了不同电压对MB5镁合金微弧氧化膜表面形貌、相结构与成分的影响,并用电化学测试方法考察了氧化膜层的耐腐蚀性能.结果表明:处理电压对微弧氧化膜层的微观组织结构、成分有显著影响,而微弧氧化膜层的微观组织结构与成分又直接影响其耐蚀性.在120~200 V下进行微弧氧化,160 V时试样耐蚀性最好.镁合金微弧氧化膜由α-MgF2,MgO,Mg2SiO4和MgAl2O4等含硅或铝的尖晶石型氧化物组成,随着氧化处理电压的增加,MgO的含量明显增加.微弧氧化时出现氧化膜微区熔化,溶液离子与基体合金都参与了微弧区物理化学反应. 相似文献
11.
电压加载方式对镁合金微弧氧化过程及膜层性能的影响 总被引:1,自引:0,他引:1
电压加载方式会影响微弧氧化过程及膜层性能。利用自制的具有多种输出脉冲形式的电源,在不同的电压增量下加载对AZ91D镁合金微弧氧化,研究了加载方式对微弧氧化过程及膜层性能的影响。结果表明:随着电压增量的增加,成膜速率增大,膜层粗糙度变大,表面的孔径增大、孔隙率增加;膜层的最终厚度主要取决于终止电压,而终止电压相同时,电压增量越大,平均耗能越小;微弧氧化的不同阶段应采用不同的电压增量,开始阶段将其恒定为10 V/min,当电压达到350 V后改增量为5 V/min直至终止电压,这种加载方式制膜时的成膜效率、能耗及膜层耐蚀性、表面性能等综合结果较好。 相似文献
12.
电流密度对MB8镁合金微弧氧化膜耐蚀性的影响 总被引:2,自引:0,他引:2
微弧氧化处理镁合金是一种有很大潜力的镁合金表面处理方法.采用碱性硅酸盐体系,讨论了电流密度(20,30,40,50 mA/cm2)对MB8镁合金表面微弧氧化膜耐蚀性能的影响,利用扫描电镜(SEM),X射线衍射(XRD)和电化学方法对膜层的表面形貌、相组成及动电位极化曲线进行了分析.结果表明:电流密度越大,膜层的生长速度越快,晶化程度越高,陶瓷层表面致密度下降,孔径增大,腐蚀电流密度先下降后上升,呈现出的熔融状态逐渐明显.因此可推断出膜层的耐蚀性能并不单由膜层的总厚度决定,还取决于膜层的致密程度,随着电流密度的升高呈先增大后减小的趋势. 相似文献
13.
镁合金微弧氧化膜的制备工艺研究 总被引:4,自引:0,他引:4
为获得所要求厚度的镁合金微弧氧化膜,研究了镁合金制备工艺.采用正交设计法优化实验方案,运用综合平衡法对每个方案下制备的氧化膜的厚度和膜层的硬度进行了分析.确定了各因素对氧化膜的影响程度,并优先被弧氧化工艺配方,确定了最佳工艺条件,并对最佳工艺条件下制备的氧化膜的微观形貌、结构、硬度以及耐腐蚀性进行了研究.结果表明:最佳工艺配方是NaOH100g/L,铝盐40g/L,氧化电压为45 V,电解液温度35℃;氧化膜主要由致密的阻挡层和多孔的疏松层构成,其主要成分是MgAl2O4 和少量的MgO、Al2O3,经微弧氧化后其硬度和耐腐蚀性较镁合金基体有很大提高. 相似文献
14.
15.
16.
《功能材料》2021,52(1)
利用微弧氧化法,在微弧氧化反应电解质中加入氟钛酸钾和GR/TiO_2粉末,在镁合金表面制备了MAO-GR/TiO_2涂层。采用SEM和FT-IR分别对GR/TiO_2粉末的表面形貌和结构进行了研究,用SEM、XRD和元素线扫描对MAO-GR/TiO_2涂层的表面形貌、相结构和元素分布进行了研究,用三电极技术对MAO-GR/TiO_2涂层的耐腐蚀性能进行了研究。结果表明,通过溶胶-凝胶法可将纳米TiO_2接枝到GO表面,生成GR/TiO_2粉末;MAO-GR/TiO_2涂层主要由Mg_2TiO_4相、Mg_3(PO4)_2相、Mg和MgO相组成;以界面为分界线,涂层一侧Ti、P和O元素高于基体一侧,基体一侧Mg元素高于涂层一侧;MAO-GR/TiO_2涂层的腐蚀电位为-0.723 V,腐蚀电流密度为8.96×10~(-8) A/cm~2,相比镁合金基体和MAO涂层,腐蚀电位提高了48.3%和36.7%,表明MAO-GR/TiO_2涂层可以显著提高镁合金基体的耐蚀性能。 相似文献
17.
目前,常用的硅酸盐镁合金微弧氧化液成分复杂且含F离子,对环境不利.以Na2SiO3-NaOH为电解质溶液,通过恒压在AZ91D镁合金表面制备了无氟微弧氧化膜.采用扫描电镜、能谱仪、X射线衍射仪及电化学测试对膜层表面的形貌、元素组成、相结构及耐蚀性等进行了表征分析.结果表明:氧化膜层表面微观多孔,膜厚约78 μm,膜层由Mg,Al,Si和O4种元素组成,不合F元素,物相主要为MgO和MgSiO3相;微弧氧化膜具有良好的耐蚀性能,与基体相比,自腐蚀电位变化较小,但腐蚀电流密度下降了近2个数量级. 相似文献
18.
19.
电流密度对镁合金微弧氧化膜结构和性能的影响 总被引:1,自引:1,他引:1
电流密度是影响微弧氧化膜层结构和性能的主要因素之一.采用测厚仪、扫描电镜(SEM)、电化学测试等手段研究了AM60B镁合金在不同电流密度下硅酸盐溶液中微弧氧化膜层的结构和耐蚀性能.结果表明,随电流密度的增大,氧化膜厚度呈线性增加;氧化膜的表面微孔数目减少,微裂纹扩展程度增大.电化学腐蚀测试结果显示,电流密度9.0 A/dm2下生成的氧化膜耐蚀性最好,主要与膜层较致密的微观结构有关. 相似文献
20.
研究了镁合金微弧氧化膜层的组织分布情况。在碱性电解液(NaH2PO4/Na2SiO3/NaAlO2:5~20g/L,NaOH:1~5g/L,KF:5~8g/L,Na3C6H5O7:0.5~2g/L,EDTA:0.5~2g/L)中,以AZ91镁合金为基体制备出微弧氧化陶瓷薄膜,制备时采用恒电流控制模式,电流密度为20A/dm2;采用扫描电镜(SEM)、光学显微镜和X-ray衍射仪(XRD)研究了氧化薄膜的微观组织结构。发现:(1)在所研究的3种电解液体系中,选用硅酸盐电解液制备的膜层具有较好的组织形貌;(2)氧化膜的两层结构中,致密层占整个膜层厚度的绝大部分,大约在75%~85%之间;(3)电解液中的成膜元素如Si、Al、P主要分布在膜层的表面层中,致密层则主要由Mg、O两种元素构成;相应的物相构成中,MgSiO3、MgAl2O4或Mg3(PO4)2主要分布在表面层中,致密层则主要由MgO构成。 相似文献