首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The secondary sintering of a Bi-2223/Ag ribbon, following the stages of primary sintering and rolling to a strain of ε∼18%, was studied by methods based on the acoustic emission, thermal expansion, and magnetic susceptibility measurements. During the second thermal treatment, a signal of acoustic emission from the ribbon was detected in a temperature range from 570 to 660°C. The process of liquid-phase healing of the rolling cracks in the ribbon material is considered as a reason of the acoustic emission. The possibility of using the acoustic emission measurements for nondestructive testing in the Bi-2223/Ag ribbon fabrication technology is considered.  相似文献   

2.
10-meter-long Ag?CNi bimetallic sheathed (Bi,Pb)-2223 tapes with outer nickel sheath and inner silver sheath have been successfully fabricated by the ??Powder in tube?? technique. Microstructure and phase evolution studies by means of SEM and XRD, as well as critical current density (J c ) measurements have been performed. It is found that the nickel sheath and dwell time in the first sintering process have great influences on the texture evolution, phase transformation and J c of the Bi-2223/Ag/Ni tapes. Mono-filament (Bi,Pb)-2223 tape with a J c of 6656?A?cm?2 and 61-filament tape with a J c of 12420?A?cm?2 are obtained. Although using composite bimetallic sheaths can reduce production costs and improve mechanical properties of the Bi-2223 tapes, the Bi-2223 content and J c of Bi-2223/Ag/Ni tapes are relatively lower than that of traditional Bi-2223/Ag tapes. Meanwhile, due to higher Bi-2223 content and better alignment of Bi-2223 grains, tapes with 61-filament have higher J c than mono-filament tapes.  相似文献   

3.
The influence of green tape thickness on the Bi-2223 phase formation and texture evolution in Ag/Ni composite-sheathed tapes fabricated by the “powder-in-tube” technique has been studied. Microstructural observations by SEM as well as critical current density (J c) measurements at 77 K, 0 T have been performed to analyze the performance of the tapes. The results show an important influence of the green tape thickness on the critical current depending on the content and texture of Bi-2223 phase. The J c increases with decreasing thickness. Moreover, texture measured by omega scans shows that the texture of the Bi-2223 phase is significantly influenced by the thickness of the green tape after the first and final sintering processes. Alignment of Bi-2223 grains in the thin tapes is much better. Higher performance of Ag/Ni composite-sheathed Bi-2223 tapes can be obtained by controlling the thickness of the green tapes.  相似文献   

4.
Long lengths of Bi-2223 conductors doped with Ag, Nb and B were fabricated. The recrystallization of the glasses during various heat treatments was studied by differential thermal analysis (DTA), differential scanning calorimetry, X-ray diffraction and resistivity measurements. Activation energies and frequency factors for crystallization were determined by non-isothermal DTA, employing different models. It was found that both the peritectic transition and the reaction rate were dependent on the ambient atmosphere. Kinetic studies under different atmospheres revealed that the thermal stability of Bi-2223 was greatly enhanced under an oxygen atmosphere. Jc measurements at 77 K showed an increase on silver addition. Furthermore it was found that the silver addition does not destroy the superconductivity. © 1998 Chapman & Hall  相似文献   

5.
Electroplastic rolling (EPR) of Bi-2223/Ag superconducting wires was performed, where pulse currents were applied during rolling to introduce an electroplastic effect. It was found that the rolling force decreased significantly compared with the traditional rolling process. Furthermore, EPR favorably minimized the sausage effect. It is revealed that the electroplastic effect can facilitate the mechanical deformation of Bi-2223/Ag composites. Segments of the Bi-2223/Ag tapes were heat treated at 830 °C for different time periods. The phase assemblies of these samples suggest that current pulses contribute to faster transformation kinetics from the Bi-2212 phase to the Bi-2223 phase. In addition, a preliminary improvement of 28% of critical current density has been achieved in a fully processed tape with EPR.  相似文献   

6.
This paper summarizes the experimental investigations on the critical current of two jointed Bi-2223/Ag superconducting tapes connected by Sn63Ag2Pb solder. Different lap lengths of contact surface were studied. The joint resistance was measured to be in the range of 0.059??0.76????, and the critical current of the jointed Bi-2223/Ag HTS tapes was measured with different charging rates using standard four-point-method in a zero-applied magnetic field applying 1 ??V/cm criterion. The experimental results showed that the longer the lap length was, the smaller the joint resistance was and the nearer the critical current approached that of Bi-2223/Ag superconducting short-sample. On the other hand, the critical current decreased with the increasing of the charging rate.  相似文献   

7.
《低温学》2002,42(6-7):377-382
We are developing Bi-2223/Ag tapes with a high engineering critical current density by optimizing the powder-in-tube process and are studying its application to coil and current leads. We have fabricated 250 m-long tape and investigated optimized processing conditions to enhance engineering critical current density. More bubbling was found when the tape was heat-treated with a higher heating rate. Different kinds of superconducting joints were fabricated with multi-filamentary Bi-2223/Ag tapes, and 58% of retained Ic was achieved using the insertion of Bi-2223 core between two exposed tapes. Current decay property of the persistent mode HTS coil was investigated. Rapid current decay was observed when the operating current is in a flux-flow range. We could successfully fabricate a low heat leak type HTS current lead with Bi-2223/Ag–Au tapes by employing a stepped geometry. Using this lead, safe operation of 2 kA current transport was confirmed.  相似文献   

8.
Multifilamentary HTSC tapes are important for their applications in various electrical devices. Powder-in-tube technique with improved optimized synthesis parameters is regarded as one of the most promising ways to prepare long-length multifilamentary Bi-2223/Ag tapes. Nevertheless, usefulness of such tapes depends on their electrical and mechanical properties. Critical current density of a Bi-2223/Ag tape with 37 filaments has been studied at 77 K with field, field orientation, thermal cycling and bending strain as parameters. Results have been discussed in light of various mechanisms and models. A small pancake coil has been fabricated out of the same tape and the test results presented.  相似文献   

9.
The stress–strain properties of Bi-2223 tapes directly relate to its applications, but have not been systematically studied yet. Three tapes sheathed by Ag and Ag alloys were manufactured for the study of stress–strain. X-ray diffraction analyses were used to determine the amorphous and Bi-2223 phases for the three tapes before and after sintering. Tensile experiments were performed to study the stress–strain properties as well. Micro-morphologies of the three tapes were observed and recorded by scanning electron microscopy. The experimental results show green tapes with a linear stress–strain relation. It is suggested that this relation comes from the sheathed metal’s properties. The mechanical properties of Ag/Mg sheathed tapes are like those of a rigid body, which do not present plasticity and elasticity. The phenomena of outgrowth and bridges were observed in Ag and Ag/Sb sheathed tapes. Also, Ag and Ag/Sb sheathed tapes showed abnormal stress–strain properties, which were subjected to micro-cracks existing in the sheathed metals and imperfections of Bi-2223 crystals.  相似文献   

10.
《低温学》2003,43(10-11):549-553
Bi-2223/Ag tapes with different lead content (Pb=0.2–0.4) powders were fabricated. The microstructural development and Jc properties were studied with starting precursor powder prepared in different conditions. The experimental results indicate that the variations of lead content extremely influence the reactivity of precursor powders, which is closely related to the formation rate of 2223 phase, microstructure and Jc values of Bi-2223/Ag tapes. In addition, the particle size distribution of precursor powders has a large effect on the transport properties. By optimizing these powder parameters, Jc values above 60,000 A/cm2 (77 K, 0 T) in short tapes were achieved.  相似文献   

11.
N. Nanato 《低温学》2007,47(1):8-11
This paper presents the electric insulated type detection method of the temperature rise in the Bi2223/Ag tape using the time-frequency visualization of AE signals based on the wavelet transform. At the high operation temperature, the specific heat and the normal zone propagation velocity of the Bi2223/Ag tape are high and low, respectively, and therefore the local and excessive temperature rise is easy to generate in the superconducting-to-normal transition. As a result, the Bi2223/Ag tape is degraded or burned. In the proposed method, AE signals accompanying with the temperature rise are measured by an AE sensor, and furthermore AE signals are precisely and visually measured and estimated by the time-frequency visualization using the wavelet transform. Experimental results show the feasibility of the proposed method as the detection method of the temperature rise in the Bi2223/Ag tape.  相似文献   

12.
To improve on present critical current (J c) performance, multifilamentary Ag/Bi-2223 tapes with a large range of reduction rates were manufactured. The relative core mass density D was calculated, dependent on the measured geometric dimensions of the tapes. Experimental results, D vs. J c, D vs. maximum pinning force density F max , and D vs. irreversible magnetic field B irr, are quantitatively formatted. In particular, the magnetic field dependence of J c is critically dependent on its core density. If the core density increases by 10%, J c of the tapes in this experiment is enhanced by as much as 100%. Therefore, in the present state of the technological process for manufacturing Ag/Bi-2223 tape, increasing the core density is clearly a significant strategy in improving the electronic and magnetic properties of the tapes and enhancing the capacity for carrying current at high magnetic fields. The limit of the bulk self-field-J c can be calculated by the relationships of J c vs. D. The limit is estimated to be on the order of 200 kA/cm2 for multifilamentary Bi-2223 tapes, which was supported by magneto-optical (MO) magnetization measurements results. It is a hard task to approach this limit with the present state of the art in manufacturing Ag/Bi-2223 tape, and it is the time to suggest some new ideals for Bi-2223 tapes to promote large-scale applications.  相似文献   

13.
We have developed Bi-2212 and 2223 tapes. For Bi-2212, two double stacked pancake type coils were fabricated using Bi-2212/Ag tapes prepared by a combination of the continuous dip-coating process and melt-solidification. A small coil (13 mm inner bore, 46.5 mm outer diameter) was inserted in a conventional superconducting magnet system. In a bias field of 20.9 T, the generated field of the coil was 0.9 T, at an Ic of 310 A (criterion 10−13 Ωm) at 1.8 K. Thus, the superconducting magnet system achieved the generation of a field of 21.8 T in the full superconducting state. A large coil (20 mm inner bore, 94 mm outer diameter) generated a field of 2.6 T (Ic = 385 A (10−13 Ωm)) at 4.2 K and 1.53 T (Ic = 225 A (10−13Ωm)) at 20 K in self-field. For Bi-2223, tapes were prepared by the powder-in-tube technique using Ag-10% Cu-x%M (x = 0–1.0, M = Ti, Zr, Hf or Au) alloy sheaths. The high Jc values of 5–7 × 104 A cm−2 at 4.2 K and 14 T were obtained for the tapes doped with x = 0.03–0.1 at.% Ti, 0.1 at.% Zr, 0.1 at.% Hf or 0.3% Au. These tapes have a modified Bi-2223 grain structure at the sheath/core interface and also a dense and more aligned microstructure, resulting in higher Jc values.  相似文献   

14.
To improve on present critical current (J c) performance, multifilamentary Ag/Bi-2223 tapes with a large range of reduction rates were manufactured. The relative core mass density D was calculated, dependent on the measured geometric dimensions of the tapes. Experimental results, D vs. J c, D vs. maximum pinning force density F max , and D vs. irreversible magnetic field B irr, are quantitatively formatted. In particular, the magnetic field dependence of J c is critically dependent on its core density. If the core density increases by 10%, J c of the tapes in this experiment is enhanced by as much as 100%. Therefore, in the present state of the technological process for manufacturing Ag/Bi-2223 tape, increasing the core density is clearly a significant strategy in improving the electronic and magnetic properties of the tapes and enhancing the capacity for carrying current at high magnetic fields. The limit of the bulk self-field-J c can be calculated by the relationships of J c vs. D. The limit is estimated to be on the order of 200 kA/cm2 for multifilamentary Bi-2223 tapes, which was supported by magneto-optical (MO) magnetization measurements results. It is a hard task to approach this limit with the present state of the art in manufacturing Ag/Bi-2223 tape, and it is the time to suggest some new ideals for Bi-2223 tapes to promote large-scale applications.  相似文献   

15.
16.
Bi2Sr2Ca2Cu3Ox(Bi-2223)/Ag tapes have been prepared by hot pressing performed at 800–840 °C for 12–96 h under 6 or 12 MPa in air. The highest transport critical current density, Jc, is 3900 A cm–2 at 77 K and 8800 A cm–2 at 65 K under zero magnetic field, which is observed in tape hot pressed at 820 °C under 12 MPa for 24 h twice. The tape has undergone a cold pressing under 260 MPa between hot pressings. Jc is limited to 120 A cm–2 in tape hot pressed for 48 h continuously, in spite of total hot pressing time, temperature and pressure all being the same as for tape hot pressed for 24 h twice. It is found that alternate hot pressing and cold pressing is effective in the preparation of Bi-2223 tapes with high Jc, which is determined by the strength of grain coupling. Grain coupling is strengthened in tape hot pressed with an intermediate cold pressing. © 1998 Chapman & Hall  相似文献   

17.
F ChovanecP Usak 《低温学》2002,42(9):543-546
A sudden drop of the coil voltage and a hysteresis of I-V curve were observed in measurement of one-layer Bi-2223/Ag coils cooled by liquid nitrogen at currents well above critical current region. Their temporal behavior indicates, that the improvement of the cooling and corresponding decrease of temperature after the jump takes place. To study this phenomenon we measured I-V curves of two Bi-2223/Ag coils made from tapes with various degree of critical current homogeneity and analogical curves of two non-superconducting coils made from thin Cu tapes having various widths. In Cu coils we really observed a sudden drop of the temperature, measured in parallel with Cu resistance drop, after reaching heat flux of about 0.4 W cm−2 during current ramping up. In spite of non-superconducting character of the tape, the hysteresis, i.e. difference between increasing branch and decreasing branch of I-V curves, was observed too! Approximately the same value of heat flux, at current corresponding to the jump, was found also in superconducting coil on segment with least value of local critical current. We conclude that observed voltage drop of the Bi-2223/Ag does not bear upon superconducting nature of the coil and, as that for Cu coil, can be explained by dynamics of heat transfer to liquid nitrogen and its history.  相似文献   

18.
High-T c superconducting joints between Ag-clad Bi-2223 tapes have been developed for persistent current applications. Two presintered tapes with one side of the silver stripped were lapped and then wrapped by a silver foil. The complex was uniaxially pressed followed by appropriate sintering to form a high-T c superconducting tape joint. It was found that the ratio of critical currents through the joint to that of the tape,I cj/Ic, depended on the uniaxial pressure and the sintering conduction. At liquid-nitrogen temperature 77 K,I cj/Ic=99% has been achieved. Persistent current loops formed by Bi-2223 tapes have also been fabricated and tested. Joint resistance of a loop was determined to be ~4×10?13 Ω between the decay time of 120 and 3600 sec.  相似文献   

19.
Curt Schmidt 《低温学》2004,44(3):187-195
The ac-losses of twisted multifilamentary Bi-2223/Ag tapes were measured in the temperature range between 4.2 K and the critical temperature Tc∼110 K. Stacks of tapes in perpendicular and in parallel field were investigated. The loss measurement is performed by the standard magnetisation technique, the absolute loss value is obtained by a calorimetric calibration measurement. For a fixed ac-field amplitude the energy loss per cycle Q is determined, at a given temperature, as a function of frequency f. The extrapolation to f→0 gives the hysteresis loss. Coupling losses are obtained from the slope of the loss curve Q(f) in the low frequency range ωτ?1. The measured total losses as a function of temperature show, at small field amplitudes, a minimum around 50 K. This is explained by the different temperature dependence of hysteresis and coupling losses. While coupling losses decrease with increasing temperature, hysteresis losses increase for field amplitudes below the penetration field. Coupling losses show a much weaker temperature dependence than the silver conductivity, which is explained by the existence of an interfacial resistance between filaments and silver matrix. Measured hysteresis losses were compared with available theoretical models and good agreement was found in parallel field.  相似文献   

20.
Critical current measurements for three polycrystalline rings of YBCO, three Bi-2223, and one YBCO + Ag were developed from a temperature close to 80 K to the critical temperature using a previously reported contactless inductive device based on the transformer method. These data were used to analyze the ability of this device to characterize, in superconducting rings, the Ginzburg-Landau, Ambegaokar-Baratoff, and De Gennes regimes as well as the crossover temperature between them.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号