首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 85 毫秒
1.
Optical design for divertor Thomson scattering system in JT-60SA has been conducted. The measurement system will use a Nd:YAG laser at 1064 nm, and scattered photons are collected by a collection optical system. The collection optics consists of primary mirror, secondary mirror, relay optics, and fiber collection optics. The laser transmission mirror and collection optics were designed to be installed in a slender lower port of JT-60SA. The assessment of the measurement errors in temperature was conducted for the designed collection optical system. Because of spatial limitation, the solid angle from the measurement points would be small especially for the measurement points in high field side, and consequently, the temperature errors in the high field side would be considerably large. The effects of several improvements on the error are discussed. Moreover, an assessment for the in-vessel laser transmission metallic mirrors is conducted for the present design.  相似文献   

2.
A millimeter wave solid state source—far infrared laser combined interferometer system (MFCI) consisting of a three-channel 890 GHz hydrogen cyanide (HCN) laser interferometer and a three-channel 340 GHz solid state source interferometer (SSI) is developed for real-time line-integrated electron density feedback and electron density profile of the EXL-50 spherical tokamak device. The interferometer system is a Mach–Zehnder type, with all probe-channels measured vertically, covering the plasma magnetic axis to the outermost closed magnetic plane. The HCN laser interferometer uses an HCN laser with a frequency of 890 GHz as a light source and modulates a 100 kHz beat signal by a rotating grating, giving a temporal resolution of 10 μs. The SSI uses two independent 340 GHz solid-state diode sources as the light source, the frequency of the two sources is adjustable, and the temporal resolution of SSI can reach 1 μs by setting the frequency difference of the two lasers at 1 MHz. The main optical path of the two interferometers is compactly installed on a set of double-layer optical platform directly below EXL-50. Dual optical path design using corner cube reflectors avoids the large support structures. Collinear the probe-beams of two wavelengths, then the phase error caused by vibration can be compensated. At present, the phase noise of the HCN Interferometer is 0.08 rad, corresponding to a line-integrated electron density of 0.88 × 1017 m−2, one channel of measuring result was obtained by the MFCI system, and the highest density measured is about 0.7 × 1019 m−2.  相似文献   

3.
HT-7 Multipoint Nd Laser Thomson Scattering Apparatus   总被引:1,自引:0,他引:1  
1. IlltroductionThomson scattering diagnostic has been an important and standard method for measuring temperature and density profiles on all modern toka-maks, such as the TV Thotnson Scattering systemon TFTR [1], the LIDAR system on JET [2] and theNd:YAG laser Thomson scattering system on Dlll--D[3]. It has the attractive characteristics of not per-turbillg the plasma to be investigated and of derivingthe absolute values of electronic temperature Ti anddensity ne' From the knot'.led…  相似文献   

4.
The optical system of the electron cyclotron emission imaging diagnostics on the HL-2A tokamak has been optimized in both the narrow zoom pattern and the wide zoom pattern. The two main features of the improved optical system are(1) larger coverage of the measurement region in the plasma and(2) a flatter imaging surface. The new optics has good focal characteristics over the whole plasma cross section. The curvature of the field of the image surface(ΔR between the core channel and the edge channel) is within 5.3 cm in the narrow zoom pattern and 6.7 cm in the wide zoom pattern after optimization, whereas the values with the present optics were 23 cm in the narrow zoom pattern and 15 cm in the wide zoom pattern. The optics will be fabricated, tested and installed on the HL-2A tokamak before the next experimental campaign.  相似文献   

5.
In August 2000 the setup of the Ljubljana ion microprobe, based on OM 150 triplet, has been completed. The beam line is installed at the 10° exit port of the 2 MeV Tandetron accelerator. It is equipped with motor driven slits, a precise five-axis goniometer and a spherically shaped measuring chamber with detectors for PIXE, PIGE, PESA, SE and RBS. In order to understand the beam optics along the complete system, consisting of the tandem accelerator and the beam line optical elements, an interactive computer code, based on a linear approximation, has been developed. The program is used both to determine the optimal parameters of the tandem focusing system in its daily use and to develop new beam line configurations. Test measurements performed on a copper grid yielded a spatial resolution of 1.0×1.5 μm2 in the high current mode (30–100 pA) and 0.5×0.9 μm2 in low current mode (104 counts/s). First analytical results confirmed excellent performance of the new Ljubljana ion microprobe.  相似文献   

6.
We describe a newly developed proton microprobe sample chamber designed for analysis of heterogeneous mineral samples. The instrument features a computer-driven stage and is equipped with novel beam and sample optics, external microscope and filter exchange system. Under the employed optical geometry, axes of beam and sample optics are collinear and normal to the sample surface, an essential aspect allowing high spatial resolution of analyses and accurate micrometer-scale sample and beam positioning. Use of a long working distance in conjunction with integral reflectance mirror are the primary design constraints satisfied for successful development. Based on measurements, the presented proton microprobe is expected to enhance studies requiring effective and easy-to-perform nondestructive microanalytical analysis of minerals.  相似文献   

7.
This paper introduces a real-time high precision measurement of phase difference based on Field Programmable Gate Array (FPGA) technology, which has been successfully applied to laser grating interference measurement and real-time feedback of plasma electron density in HL-2A tokamak. It can track the changes of electron density while setting the starting point of the density curve to zero. In a laboratory test, the measuring accuracy of phase difference is less than 0.1?, the time resolution is 80 ns, and the feedback delay is 180 μs.  相似文献   

8.
A fast radial scanning probe system was constructed for the Keda Torus eXperiment(KTX) to measure the profiles of boundary plasma parameters such as floating potential, electron density,temperature, transport fluxes, etc. The scanning probe system is driven by slow and fast motion mechanisms, corresponding to the stand-by movement of a stepping motor and the fast scanning movement of a high-torque servo-motor, respectively. In fast scanning, the scanner drives the probe radially up to 20 cm at a maximum velocity of 4.0 m s~(-1). A noncontact magnetic grating ruler with a high spatial resolution of 5 μm is used for the displacement measurement. New scanning probe can reach the center of plasmas rapidly. The comparison of plasma floating potential profiles obtained by a fixed radial rake probe and the single scanning probe suggests that the high-speed scanning probe system is reliable for measuring edge plasma parameter profiles on the KTX device.  相似文献   

9.
A phase contrast imaging(PCI) diagnostic has recently been developed on HL-2 A tokamak. It can diagnose plasma density fluctuations with maximum wave number of 15 cm~(-1) and wave number resolution of 2 cm~(-1). The time resolution reaches 2 μs. A 10.6 μm CO_2 laser is expanded to a beam with a diameter of 30 mm and injected into the plasma as an incident beam,injecting into plasma. The emerging scattered and unscattered beams are contrasted by a phase plate. The ideas of optical path design are presented in this paper, together with the parameters of the main optical components. The whole optical path of PCI is not only carefully designed, but also constructed on HL-2 A. First calibration results show the ability of this system to catch plasma turbulence in a wide frequency domain.  相似文献   

10.
The Bochum solenoid lens microprobe will be installed in a new configuration which can be fed both by the 4 MV Dynamitron tandem accelerator and by a new 500 kV accelerator of extremely low energy-spread (ΔE/E 10−5). Apart from a conventional duoplasmatron ion source, a commercial gallium liquid metal ion source (LMIS) will be implemented in this accelerator. Microprobe optics will benefit from the high brightness of the LMIS ( 105 Am−2sr−1eV−1), thus enabling an increased lateral resolution. Ion optical ray tracing, simulating the accelerator tube and the solenoid lens, has allowed one to specify the beam parameters required at the accelerator entrance to yield a micrometer focus at the target position. Using this information and further simulations, the accelerator injection optics can be particularly optimized for the new microbeam line.  相似文献   

11.
The concept and development of a new detection method for light alkali ions stemming from diagnostic beams installed on medium size tokamak is described. The method allows us the simultaneous measurement of plasma density fluctuations and fast variations in poloidal magnetic field, therefore one can infer the fast changes in edge plasma current. The concept has been worked out and the whole design process has been done at Wigner RCP. The test detector with appropriate mechanics and electronics is already installed on COMPASS tokamak. General ion trajectory calculation code (ABPIons) has also been developed. Detailed calculations show the possibility of reconstruction of edge plasma current density profile changes with high temporal resolution, and the possibility of density profile reconstruction with better spatial resolution compared to standard Li-BES measurement, this is important for pedestal studies.  相似文献   

12.
α-放射性气溶胶取样膜是放射性气溶胶监测系统的重要组成部分,选择过滤效率高、自吸收小及高表面收集特性的滤膜,将有利于提高监测速度和被测α的能量分辨率,后者有利于α辐射体的准确监测和成分分析。研究选用三种不同类型滤膜采集氡子体气溶胶,测定了滤膜对气溶胶取样的过滤效率、自吸收因子、表面收集特性以及阻力与流量的关系参数。在气溶胶浓度、取样流量和取样时间相同的条件下,平均孔径为0.8μm的混合纤维素酯滤膜的过滤效率最高,自吸收损失较小;孔径为0.4μm的重离子微孔滤膜的自吸收损失最小,表面收集特性优越,对于提高监测分辨率具有优势;玻璃纤维滤膜的阻力小,适合大流量取样条件下采用。  相似文献   

13.
The TopoTomo bending magnet beamline at the ANKA synchrotron facility in Karlsruhe (Germany) operates in the hard X-ray regime (above 6 keV). Recently, an X-ray micro-imaging station has been installed at TopoTomo. For typical imaging applications, a filtered white beam or from 2009 on a double-multilayer monochromator is used. In order to optimize the field of view and the resolution of the available indirect pixel detectors, different optical systems have been installed, adapted, respectively, to a large field of view (macroscope) and to high spatial resolution (microscope). They can be combined with different camera systems, ranging from 14-bit dynamic range CCDs to fast CMOS cameras. The spatial resolution can be brought substantially beyond the micrometer limit by using a Bragg magnifier. Due to the moderate flux of the beamline compared to insertion-device beamlines on third generation light sources, special emphasis has been put on the efficiency of the detectors via a dedicated scintillator concept. The layout of the beamline optics makes optimal use of the coherence properties. Thus, absorption contrast, phase-contrast and analyzer-based imaging can be applied. Additionally, white beam synchrotron topography is performed, using digital indirect X-ray pixel detectors as well as X-ray film.  相似文献   

14.
本文通过蒙特卡罗程序EGS模拟研究了电子束与靶的相互作用,对成像束流光学进行了设计,并对束流匹配对空间分辨的影响、超快分束技术和产生横向均匀束技术等进行了模拟研究。实验验证了高能电子成像能达到μm量级的空间分辨,并可实现厚度、密度分辨及明-暗场成像等特点。同时给出了后续实验及研究计划,希望进一步提高高能电子成像性能并拓宽其应用领域。  相似文献   

15.
A CO2 laser-based phase contrast imaging (PCI) diagnostic has been developed on HL-2A tokamak. It can detect line integrated plasma density fluctuations by measuring the phase shift of laser beam after being scattered by the bulk plasma. The diagnosed radial region ranges from ρ r / a = 0.625 to 0.7. 32-channel HgCdTe detectors with alternative-current biased amplifiers are arranged in line at the imaging plane of the optical path. This PCI is able to diagnose density fluctuations with wavenumbers ranging from 2 cm-1 to 15 cm-1 and the time resolution is better than 2 μs. The first experimental data were achieved in 2018 spring campaign of HL-2A tokamak. High performance is confirmed in different discharging configurations and makes it a keen tool in broadband turbulence investigations.  相似文献   

16.
By coupling a scintillation crystal to a photomultiplier with fiber optics, one can place the detector in areas not normally accessible to a crystal-photomultiplier combination. Although fiber optics provide a flexible optical coupling, serious light losses cause about a factor of 10 reduction in the light intensity reaching the photomultiplier. Most of the light loss is due to the small acceptance angle of the fiber optics with transmission losses and crystal aperture losses playing secondary roles. Attention to the design and to the selection of the crystals and fiber optics help to optimize the light collection efficiency. The light losses lower the scintillation intensity from low-energy (10 to 40 keV) radiation into the region where photomultiplier noise becomes important (3.5 - 18 photoelectron equivalents). This noise consists of Cerenkov events, faceplate scintillations, electroluminescence, afterpulses and thermionic emissions. For effective low background counting this noise must be reduced. A combination of pulse-shape discrimination, magnetically limiting the photocathode area and shielding were effective in reducing the background rate from 513±3 counts/minute to 10.0±0.5 counts/minute in the energy range from 6.5 to 40 keV. By coincidence counting, in the same energy region, a background rate of 1.60±0.28 counts/minute was obtained.  相似文献   

17.
Beam flatness is an important parameter that determines the performance and the lifetime of a gridded ion thruster.To improve the beam flatness of the 30 cm (LIPS-300) ion thruster,variable aperture ion optics that adapts to the decreasing ion density as the radius increases is proposed.It is the ion optics that the screen grid surface is divided into several zones,where the aperture diameter in each zone is determined by the ion density and the electron temperature upstream of the screen grid.The beam current density in the central area is artificially reduced.A particle in cell-Monte Carlo collision model is applied in this work to investigating the effect of variable aperture on the perveance and the maximum beam current per aperture by simulating the extraction,focusing and acceleration processes of ions.Taking into account the engineering implementability,the screen grid surface is divided into four zones.The hole diameter in each zone is decreased from 1.95 mm to 1.8 mm,1.9 mm,1.8 mm and 1.7 mm,respectively.The simulation results show that the maximum ion density in the center area of grid is decreased by 10.6% and 6.99%,while it is increased by 6.49% and 22.3% in the edge region,respectively.The beam flatness of the variable aperture ion optics is improved from 0.69 to 0.88.The erosion rate is decreased by 31.9%,but the total beam current is also decreased by 7.15%.The simulation results can provide a valuable reference of the development of the ion thruster.  相似文献   

18.
Electron cyclotron emission imaging system in the frequency range of 95 GHz -125 GHz is going to be constructed for a two-dimensional diagnosis of the electron temperature profiles and fluctuations on the HT-7 Tokamak. The optical design for the ECEI diagnostic system is completed. Because of the superconducting technology used in HT-7, the vacuum chamber is rather thick (630 mm), the height of the horizontal windows is limited (maximum 450 mm), which constrains greatly the ECE imaging Gaussian beam that passing through the windows. We here comes to make a design compromise between the number of the beams that can pass through the windows and the spatial resolution (around 1.1 cm). We also find that due to the field curvature of the optical system, the gaussian beams of edge channels are always overlapped. To flatten the field curvature, it is needed to insert a concave made of a material with a low refractive index (compared with the one used in the convex). But the suitable material has not been avail  相似文献   

19.
Electron cyclotron emission imaging system in the frequency range of 95 GHz ~125 GHz is going to be constructed for a two-dimensional diagnosis of the electron temperature profiles and fluctuations on the HT-7 Tokamak. The optical design for the ECEI diagnostic system is completed. Because of the superconducting technology used in HT-7, the vacuum chamber is rather thick (630 mm), the height of the horizontal windows is limited (maximum 450 mm), which constrains greatly the ECE imaging Gaussian beam that passing through the windows. We here comes to make a design compromise between the number of the beams that can pass through the windows and the spatial resolution (around 1.1 cm). We also find that due to the field curvature of the optical system, the gaussian beams of edge channels are always overlapped. To flatten the field curvature, it is needed to insert a concave made of a material with a low refractive index (compared with the one used in the convex). But the suitable material has not been available so far, therefore the deterioration of the resolution in some channels (e.g. the edge channels) is acceptable.  相似文献   

20.
Review of X-ray dark-field imaging under development is presented. Its goal is its application to clini-cal diagnosis of organs that have been invisible by the ordinary techniques. In order to clinically visualize tissues in detail one needs high contrast and high spatial resolution say~50μm. This X-ray optics comprises a Bragg asymmet-ric monochro-collimator and a Bragg case or a Laue case filter with capability of analyzing angle in a parallel posi-tion. Their diffraction index is 4,4,0 and the X-ray energy 35 keV (λ=0.0354 nm). The filter has 0.6 mm thickness in the Bragg case or 1.075 mm or 2.15 mm thickness in the Laue case. Under this condition only the refracted X-rays from object can transmit through the filter while the beam that may receive absorption and/or phase change will not.Soft tissues at human joints thus taken show high contrast images so that the DFI is promising for clinical diagnosis.Preliminary X-ray absorption images of another clinical candidates of ear bones are also shown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号